cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213221 Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A157004 and g(x) is the g.f. of A157003.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 18, 10, 4, 1, 58, 32, 15, 5, 1, 192, 106, 52, 21, 6, 1, 650, 357, 180, 79, 28, 7, 1, 2232, 1222, 624, 288, 114, 36, 8, 1, 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1, 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2013

Keywords

Examples

			Triangle begins
1
2, 1
6, 3, 1
18, 10, 4, 1
58, 32, 15, 5, 1
192, 106, 52, 21, 6, 1
650, 357, 180, 79, 28, 7, 1
2232, 1222, 624, 288, 114, 36, 8, 1
7746, 4230, 2178, 1035, 439, 158, 45, 9, 1
27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
95376, 51918, 27000, 13265, 6056, 2508, 911, 277, 66, 11, 1
337404, 183472, 95744, 47532, 22174, 9552, 3708, 1255, 354, 78, 12, 1
		

References

  • Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1032. - N. J. A. Sloane, Mar 25 2014

Crossrefs

Cf. A157003, A157004 (column k=0), A261058 (column k=1).

Formula

Column k has g.f. ((1-sqrt(1-4*x+4*x^3))/(2*(1-x^2)))^k/sqrt(1-4*x+4*x^3).
T(n,0) = 2*T(n,1) - 2*T(n-2,1), T(n+1,k+1) = T(n,k) + T(n+1,k+2) - T(n-1,k+2) for n>=0.