A213221 Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A157004 and g(x) is the g.f. of A157003.
1, 2, 1, 6, 3, 1, 18, 10, 4, 1, 58, 32, 15, 5, 1, 192, 106, 52, 21, 6, 1, 650, 357, 180, 79, 28, 7, 1, 2232, 1222, 624, 288, 114, 36, 8, 1, 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1, 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1
Offset: 0
Examples
Triangle begins 1 2, 1 6, 3, 1 18, 10, 4, 1 58, 32, 15, 5, 1 192, 106, 52, 21, 6, 1 650, 357, 180, 79, 28, 7, 1 2232, 1222, 624, 288, 114, 36, 8, 1 7746, 4230, 2178, 1035, 439, 158, 45, 9, 1 27096, 14770, 7648, 3706, 1642, 643, 212, 55, 10, 1 95376, 51918, 27000, 13265, 6056, 2508, 911, 277, 66, 11, 1 337404, 183472, 95744, 47532, 22174, 9552, 3708, 1255, 354, 78, 12, 1
References
- Baccherini, D.; Merlini, D.; Sprugnoli, R. Binary words excluding a pattern and proper Riordan arrays. Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1032. - N. J. A. Sloane, Mar 25 2014
Formula
Column k has g.f. ((1-sqrt(1-4*x+4*x^3))/(2*(1-x^2)))^k/sqrt(1-4*x+4*x^3).
T(n,0) = 2*T(n,1) - 2*T(n-2,1), T(n+1,k+1) = T(n,k) + T(n+1,k+2) - T(n-1,k+2) for n>=0.