cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213224 Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.

This page as a plain text file.
%I A213224 #27 Feb 16 2025 08:33:17
%S A213224 1,1,3,1,4,7,1,3,13,5,1,4,31,5,31,1,3,9,13,11,9,1,7,7,5,11,7,127,1,3,
%T A213224 9,16,2801,7,1093,17,1,4,307,5,25,36,19531,32,73,1,3,27,5,30941,9,29,
%U A213224 32,757,11,1,3,7,16,88741,63,43,64,19,44,23
%N A213224 Minimal order A(n,k) of degree-n irreducible polynomials over GF(prime(k)); square array A(n,k), n>=1, k>=1, read by antidiagonals.
%C A213224 Maximal order of degree-n irreducible polynomials over GF(prime(k)) is prime(k)^n-1 and thus A(n,k) < prime(k)^n.
%H A213224 Alois P. Heinz, <a href="/A213224/b213224.txt">Antidiagonals n = 1..45, flattened</a>
%H A213224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrreduciblePolynomial.html">Irreducible Polynomial</a>
%H A213224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolynomialOrder.html">Polynomial Order</a>
%F A213224 A(n,k) = min(M(n,k)) with M(n,k) = {d : d|(prime(k)^n-1)} \ U(n-1,k) and U(n,k) = M(n,k) union U(n-1,k) for n>0, U(0,k) = {}.
%e A213224 A(4,1) = 5: The degree-4 irreducible polynomials p over GF(prime(1)) = GF(2) are 1+x+x^2+x^3+x^4, 1+x+x^4, 1+x^3+x^4. Their orders (i.e., the smallest integer e for which p divides x^e+1) are 5, 15, 15, and the minimal order is 5. (1+x+x^2+x^3+x^4) * (1+x) == x^5+1 (mod 2).
%e A213224 Square array A(n,k) begins:
%e A213224     1,    1,     1,    1,   1,       1,        1,   1, ...
%e A213224     3,    4,     3,    4,   3,       7,        3,   4, ...
%e A213224     7,   13,    31,    9,   7,       9,      307,  27, ...
%e A213224     5,    5,    13,    5,  16,       5,        5,  16, ...
%e A213224    31,   11,    11, 2801,  25,   30941,    88741, 151, ...
%e A213224     9,    7,     7,   36,   9,      63,        7,   7, ...
%e A213224   127, 1093, 19531,   29,  43, 5229043, 25646167, 701, ...
%e A213224    17,   32,    32,   64,  32,      32,      128,  17, ...
%p A213224 with(numtheory):
%p A213224 M:= proc(n, i) option remember;
%p A213224       divisors(ithprime(i)^n-1) minus U(n-1, i)
%p A213224     end:
%p A213224 U:= proc(n, i) option remember;
%p A213224       `if`(n=0, {}, M(n, i) union U(n-1, i))
%p A213224     end:
%p A213224 A:= (n, k)-> min(M(n, k)[]):
%p A213224 seq(seq(A(n, d+1-n), n=1..d), d=1..14);
%t A213224 M[n_, i_] := M[n, i] = Divisors[Prime[i]^n - 1] ~Complement~ U[n-1, i]; U[n_, i_] := U[n, i] = If[n == 0, {}, M[n, i] ~Union~ U[n-1, i]]; A[n_, k_] := Min[M[n, k]]; Table[Table[A[n, d+1-n], {n, 1, d}], {d, 1, 14}] // Flatten (* _Jean-François Alcover_, Dec 13 2013, translated from Maple *)
%Y A213224 Columns k=1-10 give: A212953, A218356, A218357, A218358, A218359, A218360, A218361, A218362, A218363, A218364.
%Y A213224 Columns k=1-10 are first columns of: A059912, A212906, A212485, A212486, A218336, A218337, A218338, A218339, A218340, A218341.
%Y A213224 Cf. A212737 (all orders).
%K A213224 nonn,tabl
%O A213224 1,3
%A A213224 _Alois P. Heinz_, Jun 06 2012