cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213257 a(1) = 1, a(2) = 2 and, for n > 2, a(n) is the smallest integer greater than a(n - 1) such that no three terms of the sequence form a geometric progression of the form {x, 2 x, 4 x}.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105
Offset: 1

Views

Author

John W. Layman, Jun 07 2012

Keywords

Comments

Conjecture. The positive integers that are not in this sequence are given by the positions of 2 in the fixed-point of the morphism 0->01, 1->02, 2->03, 3->01 (see A191255). (This has been confirmed for over 5000 terms of A213257.) To illustrate, the fixed-point of the indicated morphism is {0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,1,0,1,0,2,0,...} and 2 occurs at positions {4,12,20,...}, integers that are missing in A213257.
The positive integers that are not in this sequence are listed in A213258.
For the sequence containing no 3-term arithmetic progression,see A003278.

Examples

			Given that the sequence begins {1, 2, 3, 5, 6, 7, 8, 9, 10, 11,...}, the next term, a(11), cannot be 12, because then the forbidden progression {3,6,12} would occur in the sequence.  13 is allowed, however, so a(11)=13.
		

Crossrefs