cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213268 Denominators of the Inverse semi-binomial transform of A001477(n) read downwards antidiagonals.

This page as a plain text file.
%I A213268 #23 Jun 09 2016 11:54:50
%S A213268 1,1,1,1,2,1,1,1,4,4,1,2,2,8,2,1,1,4,1,16,16,1,2,1,8,8,32,16,1,1,4,4,
%T A213268 16,8,64,64,1,2,2,8,4,32,32,128,16,1,1,4,2,16,16,64,8,256,256,1,2,1,8,
%U A213268 8,32,4,128,128,512,256,1,1,4,4,16,2,64,64,256,128,1024,1024
%N A213268 Denominators of the Inverse semi-binomial transform of A001477(n) read downwards antidiagonals.
%C A213268 Starting from any sequence a(k) in the first row, define the array T(n,k) of the inverse semi-binomial transform  by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -T(n-1,k)/2, n>=1.
%C A213268 Here, where the first row is the nonnegative integers, the array is
%C A213268 0        1      2      3    4      5      6      7     8   =A001477(n)
%C A213268 1       3/2     2    5/2    3    7/2      4    9/2     5   =A026741(n+2)/A000034(n)
%C A213268 1       5/4   3/2    7/4    2    9/4    5/2   11/4     3   =A060819(n+4)/A176895(n)
%C A213268 3/4     7/8     1    9/8  5/4   11/8    3/2   13/8   7/4   =A106609(n+6)/A205383(n+6)
%C A213268 1/2    9/16   5/8  11/16  3/4  13/16    7/8  15/16     1   =A106617(n+8)/TBD
%C A213268 5/16  11/32   3/8  13/32 7/16  15/32    1/2  17/32  9/16
%C A213268 3/16  13/64  7/32  15/64  1/4  17/64   9/32  19/64  5/16
%C A213268 7/64 15/128   1/8 17/128 9/64 19/128   5/32 21/128 11/64
%C A213268 1/16 17/256 9/128 19/256 5/64 21/256 11/128 23/256  3/32.
%C A213268 The first column contains 0, followed by fractions A000265/A084623, that is Oresme numbers n/2^n multiplied by 2 (see A209308).
%e A213268 The array of denominators starts:
%e A213268   1   1   1   1   1   1   1   1   1   1   1 ...
%e A213268   1   2   1   2   1   2   1   2   1   2   1 ...
%e A213268   1   4   2   4   1   4   2   4   1   4   2 ...
%e A213268   4   8   1   8   4   8   2   8   4   8   1 ...
%e A213268   2  16   8  16   4  16   8  16   1  16   8 ...
%e A213268 16  32   8  32  16  32   2  32  16  32   8 ...
%e A213268 16  64  32  64   4  64  32  64  16  64  32 ...
%e A213268 64 128   8 128  64 128  32 128  64 128  16 ...
%e A213268 16 256 128 256  64 256 128 256  32 256 128 ...
%e A213268 256 512 128 512 256 512  64 512 256 512 128 ...
%e A213268 All entries are powers of 2.
%p A213268 A213268frac := proc(n,k)
%p A213268         if n = 0 then
%p A213268                 return k ;
%p A213268         else
%p A213268                 return procname(n-1,k+1)-procname(n-1,k)/2 ;
%p A213268         end if;
%p A213268 end proc:
%p A213268 A213268 := proc(n,k)
%p A213268         denom(A213268frac(n,k)) ;
%p A213268 end proc: # _R. J. Mathar_, Jun 30 2012
%t A213268 T[0, k_] := k; T[n_, k_] := T[n, k] = T[n-1, k+1] - T[n-1, k]/2; Table[T[n-k, k] // Denominator, {n, 0, 11}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 12 2014 *)
%K A213268 nonn,frac,tabl
%O A213268 0,5
%A A213268 _Paul Curtz_, Jun 08 2012