cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213272 Costas arrays such that the terms in each row of the difference table are unique modulo n.

This page as a plain text file.
%I A213272 #25 May 27 2019 04:37:28
%S A213272 1,2,0,8,0,12,0,0,0,40,0,48,0,0,0,128,0,108,0,0,0,220,0,0,0,0,0,336,0
%N A213272 Costas arrays such that the terms in each row of the difference table are unique modulo n.
%C A213272 Permutations of n elements such that each row in the difference table consists of pairwise distinct elements, even when taken modulo n (see example).
%C A213272 For n<=29 the nonzero terms a(n) appear for n in A006093 (primes minus 1) and a(n)=A002618(n) (n*phi(n)); omitting the zeros we obtain A104039 (number of primitive roots modulo (p(n))^2, where p(n) is n-th prime).
%C A213272 A002618(n) divides a(n) for all n, since (treating elements as integers modulo n) adding or subtracting a constant from each element or multiplying each element by an integer coprime to n preserves distinctness of all values modulo n. - _Charlie Neder_, May 26 2019
%H A213272 Scott Rickard, <a href="http://costasarrays.org/">costasarrays.org</a> (information and papers about Costas arrays). [broken link?]
%H A213272 Wikipedia, <a href="https://en.wikipedia.org/wiki/Costas_array">Costas array</a>.
%e A213272 The permutation (10, 9, 2, 8, 6, 1, 3, 7, 4, 5) corresponds to a Costas array:
%e A213272   10  9  2  8  6  1  3  7  4  5  (Permutation: p(1), p(2), p(3), ..., p(n) )
%e A213272   -1 -7  6 -2 -5  2  4 -3  1     (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
%e A213272   -8 -1  4 -7 -3  6  1 -2        (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
%e A213272   -2 -3 -1 -5  1  3  2           (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
%e A213272   -4 -8  1 -1 -2  4              ( etc. )
%e A213272   -9 -6  5 -4 -1
%e A213272   -7 -2  2 -3
%e A213272   -3 -5  3
%e A213272   -6 -4
%e A213272   -5
%e A213272 The values in each row are unique also modulo n=10:
%e A213272   10 9 2 8 6 1 3 7 4 5  (Permutation: p(1), p(2), p(3), ..., p(n) )
%e A213272    9 3 6 8 5 2 4 7 1    (step-1 differences: p(2)-p(1), p(3)-p(2), ... )
%e A213272    2 9 4 3 7 6 1 8      (step-2 differences: p(3)-p(1), p(4)-p(2), ... )
%e A213272    8 7 9 5 1 3 2        (step-3 differences: p(4)-p(1), p(5)-p(2), ... )
%e A213272    6 2 1 9 8 4          ( etc. )
%e A213272    1 4 5 6 9
%e A213272    3 8 2 7
%e A213272    7 5 3
%e A213272    4 6
%e A213272    5
%Y A213272 Cf. A008404 (Costas arrays), A213270 (Costas arrays that are involutions), A213271 (Costas arrays that are derangements), A213338 (Costas arrays that are cyclic), A213339 (Costas arrays that are connected).
%K A213272 nonn,hard,more
%O A213272 1,2
%A A213272 _Joerg Arndt_, Jun 08 2012