This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213278 #26 Mar 26 2019 19:42:05 %S A213278 1,6,24,12,20,24,112,24,72,60,110,24,364,336,120,48,612,72,342,60,336, %T A213278 330,1104,24,100,1092,216,336,406,120,930,96,1320,612,560,72,2812,342, %U A213278 2184,120,1640,336,3784,660,360,1104,1504,48,784,300,1224,1092,5724 %N A213278 Least common multiple of A001175(n) and n. %C A213278 If n>1 then a(n) is even (see A001175). - _Jon Maiga_, Mar 25 2019 %H A213278 Jon Maiga, <a href="/A213278/b213278.txt">Table of n, a(n) for n = 1..23002</a> (2..23002 from Lars Blomberg) %F A213278 a(n) = lcm(A001175(n), n). - _Jon Maiga_, Mar 24 2019 %e A213278 Example with n=3: %e A213278 Fib(k): 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368 %e A213278 Fib(k) mod 3: 0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0 %e A213278 k mod 3: 0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0 %e A213278 k increases by 24 before it realigns with Fib(k) mod 3 therefore a(3) = lcm(A001175(3), 3) = lcm(8, 3) = 24. %Y A213278 Cf. A000045, A001175, A213277. %K A213278 nonn %O A213278 1,2 %A A213278 _Lars Blomberg_, Jun 09 2012 %E A213278 Changed offset to 1, added a(1)=1 and simplified name by _Jon Maiga_, Mar 25 2019