cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213303 Smallest number with n nonprime substrings (Version 2: substrings with leading zeros are counted as nonprime if the corresponding number is > 0).

Original entry on oeis.org

2, 1, 10, 14, 101, 104, 144, 1001, 1014, 1044, 1444, 10010, 10014, 10144, 10444, 14444, 100101, 100104, 100144, 101444, 104444, 144444, 1000144, 1001014, 1001044, 1001444, 1014444, 1044444, 1444444, 10001044, 10001444, 10010144, 10010444, 10014444, 10144444, 10444444, 14444444, 100010144
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is well defined since for each n >= 0 there is a number with n nonprime substrings.
Different from A213304, first different term is a(16).

Examples

			a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=10, since 10 is the least number with 2 nonprime substrings, these are 1 and 10 ('0' will not be counted).
a(3)=14, since 14 is the least number with 3 nonprime substrings, these are 1 and 4 and 14. 10, 11 and 12 only have 2 such substrings.
		

Crossrefs

Formula

a(m(m+1)/2) = (13*10^(m-1)-4)/9, m>0.
With b(n):=floor((sqrt(8*n-7)-1)/2):
a(n) > 10^b(n), for n>2, a(n) = 10^b(n) for n=1,2.
a(n) >= 10^b(n)+4*10^(n-1-b(n)(b(n)+1)/2)-1)/9, equality holds if n or n+1 is a triangular number > 0 (cf. A000217).
a(n) <= A213304(n).
a(n) <= A213306(n).

A213307 Minimal prime with n nonprime substrings (Version 3: substrings with leading zeros are counted as nonprime if the corresponding number is not a prime).

Original entry on oeis.org

2, 13, 11, 127, 101, 149, 1009, 1063, 1049, 1481, 10091, 10069, 10169, 11681, 14669, 100129, 100189, 100169, 101681, 104681, 146669, 1000669, 1001219, 1001081, 1004669, 1014469, 1046849, 1468469, 10001081, 10004669, 10010851
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Examples

			a(0) = 2, since 2 is the least number with zero nonprime substrings.
a(1) = 13, since 13 there is one nonprime substring (=1).
a(2) = 11, since 11 is the least number with 2 nonprime substrings (2 times ‘1’).
a(3) = 127, since 127 is the least number with 3 nonprime substrings, these are 1 and 12 and 27 (according to version 3).
		

Crossrefs

Formula

a(n) > 10^floor((sqrt(8*n+1)-1)/2), for n>2.
a(n) >= A213304(n).
a(n) >= A213306(n).
Showing 1-2 of 2 results.