cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213324 Number of permutations of n objects such that no five-element subset is preserved.

Original entry on oeis.org

1, 1, 2, 6, 24, 0, 265, 2260, 20145, 200240, 2492225, 23163480, 270877705, 3449462080, 48030998625, 713129276000, 11685451112225, 198919432944000, 3585292622812225, 68053546078588000, 1360638669122771625, 28525836193802883200, 627637954389517169825, 14435957818250131813200, 346518764145610187160625
Offset: 0

Views

Author

Les Reid, Jun 08 2012

Keywords

Comments

Limit_{n->oo} a(n)/n! = (35-24*exp(1/4)+24*exp(1/3)+24*exp(7/12)+24*exp(3/4))/(24*exp(137/60)) = 0.5585422951...

Examples

			For n=6 the only permutations that fix no five-element subset are the 120 6-cycles, the 90 products of a 4-cycle and a 2-cycle, the 40 products of two 3-cycles, and the 15 products of three 2-cycles, therefore a(5)=265.
		

Crossrefs

Programs

  • PARI
    x='x+O('x^66);
    egf=((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Jun 09 2012 */

Formula

E.g.f.: ((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x).