A213324 Number of permutations of n objects such that no five-element subset is preserved.
1, 1, 2, 6, 24, 0, 265, 2260, 20145, 200240, 2492225, 23163480, 270877705, 3449462080, 48030998625, 713129276000, 11685451112225, 198919432944000, 3585292622812225, 68053546078588000, 1360638669122771625, 28525836193802883200, 627637954389517169825, 14435957818250131813200, 346518764145610187160625
Offset: 0
Keywords
Examples
For n=6 the only permutations that fix no five-element subset are the 120 6-cycles, the 90 products of a 4-cycle and a 2-cycle, the 40 products of two 3-cycles, and the 15 products of three 2-cycles, therefore a(5)=265.
Programs
-
PARI
x='x+O('x^66); egf=((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x); Vec(serlaplace(egf)) /* Joerg Arndt, Jun 09 2012 */
Formula
E.g.f.: ((x^2/2+2*x^3/3+7*x^4/24)*exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)+x*exp(-x-x^2/2-x^4/4-x^5/5)+exp(-x-x^2/2-x^5/5)+exp(-x-x^3/3-x^5/5)-exp(-x-x^2/2-x^3/3-x^5/5))/(1-x).
Comments