A213345 3-quantum transitions in systems of N>=3 spin 1/2 particles, in columns by combination indices.
1, 8, 40, 5, 160, 60, 560, 420, 21, 1792, 2240, 336, 5376, 10080, 3024, 84, 15360, 40320, 20160, 1680, 42240, 147840, 110880, 18480, 330, 112640, 506880, 532224, 147840, 7920, 292864, 1647360, 2306304, 960960, 102960
Offset: 3
Examples
Some of the 40 triple-quantum transitions for N = 5 and combination index 0: (00000,01011),(10010,11111),... Starting rows of the triangle T(3;N,k): N | k = 0, 1, ..., floor((N-3)/2) 3 | 1 4 | 8 5 | 40 5 6 | 160 60 7 | 560 420 21
References
- See A213343
Links
- Stanislav Sykora, Table of n, a(n) for n = 3..2452
- Stanislav Sykora, T(3;N,k) with rows N=3,..,100 and columns k=0,..,floor((N-3)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Crossrefs
Programs
-
Mathematica
With[{q = 3}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 13}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
PARI
See A213343; set thisq = 3.
Formula
Set q = 3 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Comments