cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213346 4-quantum transitions in systems of N>=4 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 10, 60, 6, 280, 84, 1120, 672, 28, 4032, 4032, 504, 13440, 20160, 5040, 120, 42240, 88704, 36960, 2640, 126720, 354816, 221760, 31680, 495, 366080, 1317888, 1153152, 274560, 12870, 1025024, 4612608, 5381376, 1921920, 180180, 2002
Offset: 4

Views

Author

Stanislav Sykora, Jun 12 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for quadruple-quantum transitions (q = 4).
It lists the flattened triangle T(4;N,k) with rows N = 4,5,... and columns k = 0..floor((N-4)/2).

Examples

			Starting rows of the triangle:
  N | k = 0, 1, ..., floor((N-4)/2)
  4 |    1
  5 |   10
  6 |   60   6
  7 |  280  84
  8 | 1120 672 28
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213345 (q=1 to 3), A213347 to A213352 (q=5 to 10).
Cf. A003472 (first column), A004310 (row sums).

Programs

  • Mathematica
    With[{q = 4}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 14}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    See A213343; set thisq = 4

Formula

Set q = 4 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k)