This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213347 #20 Nov 18 2019 22:07:07 %S A213347 1,12,84,7,448,112,2016,1008,36,8064,6720,720,29568,36960,7920,165, %T A213347 101376,177408,63360,3960,329472,768768,411840,51480,715,1025024, %U A213347 3075072,2306304,480480,20020,3075072,11531520,11531520 %N A213347 5-quantum transitions in systems of N>=5 spin 1/2 particles, in columns by combination indices. %C A213347 For a general discussion, please see A213343. %C A213347 This a(n) is for quintuple-quantum transitions (q = 5). %C A213347 It lists the flattened triangle T(5;N,k) with rows N = 5,6,... and columns N, k = 0..floor((N-5)/2). %D A213347 See A213343 %H A213347 Stanislav Sykora, <a href="/A213347/b213347.txt">Table of n, a(n) for n = 5..2356</a> %H A213347 Stanislav Sykora, <a href="/A213347/a213347.txt">T(5;N,k) with rows N=5,..,100 and columns k=0,..,floor((N-5)/2)</a> %H A213347 Stanislav Sýkora, <a href="http://www.ebyte.it/stan/blog12to14.html#14Dec31">Magnetic Resonance on OEIS</a>, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019. %F A213347 Set q = 5 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k). %e A213347 Starting rows of the triangle: %e A213347 N | k = 0, 1, ..., floor((N-5)/2) %e A213347 5 | 1 %e A213347 6 | 12 %e A213347 7 | 84 7 %e A213347 8 | 448 112 %e A213347 9 | 2016 1008 36 %t A213347 With[{q = 5}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 15}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* _Michael De Vlieger_, Nov 18 2019 *) %o A213347 (PARI) See A213343; set thisq = 5 %Y A213347 Cf. A051288 (q=0), A213343 to A213346 (q=1 to 4), A213348 to A213352 (q=6 to 10). %Y A213347 A054849 (first column), A004311 (row sums). %K A213347 tabf,nonn %O A213347 5,2 %A A213347 _Stanislav Sykora_, Jun 13 2012