cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213348 6-quantum transitions in systems of N >= 6 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 14, 112, 8, 672, 144, 3360, 1440, 45, 14784, 10560, 990, 59136, 63360, 11880, 220, 219648, 329472, 102960, 5720, 768768, 1537536, 720720, 80080, 1001, 2562560, 6589440, 4324320, 800800, 30030, 8200192, 26357760, 23063040
Offset: 6

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for sextuple-quantum transitions (q = 6).
It lists the flattened triangle T(6;N,k) with rows N = 6,7,... and columns k = 0..floor((N-6)/2).

Examples

			Starting rows of the triangle:
   N | k = 0, 1, ..., floor((N-6)/2)
   6 |    1
   7 |   14
   8 |  112    8
   9 |  672  144
  10 | 3360 1440 45
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213347 (q=1 to 5), A213349 to A213352 (q=7 to 10).
Cf. A002409 (first column, with offset 6), A004312 (row sums).

Programs

  • Mathematica
    With[{q = 6}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    See A213343; set thisq = 6

Formula

Set q = 6 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).