cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213359 Sum of all parts that are not the smallest part (counted with multiplicity) of all partitions of n.

This page as a plain text file.
%I A213359 #21 Feb 21 2017 02:38:19
%S A213359 0,0,2,5,16,27,59,96,164,260,415,606,923,1336,1911,2698,3787,5203,
%T A213359 7142,9646,12962,17295,22902,30063,39315,51104,66013,84898,108658,
%U A213359 138397,175593,221872,279207,350248,437607,545093,676764,837873,1033961,1272730,1562137
%N A213359 Sum of all parts that are not the smallest part (counted with multiplicity) of all partitions of n.
%H A213359 Alois P. Heinz, <a href="/A213359/b213359.txt">Table of n, a(n) for n = 1..1000</a>
%F A213359 a(n) = A066186(n) - A092309(n).
%F A213359 G.f.: Sum_{i>0}(x^i/(1-x^i))(Sum_{j>i}(j*x^j/(1-x^j))/Product_{j>i}(1-x^j)) (obtained by logarithmic differentiation of the bivariate g.f. given in A268189). - _Emeric Deutsch_, Feb 02 2016
%e A213359 a(4) = 5 because the partitions of 4 are [1,1,1,1], [1,1,2], [1,3], [2,2], and [4], having sum of parts that are not the smallest 0, 2, 3, 0, and 0, respectively, and 0 + 2 + 3 + 0 + 0 = 5. - _Emeric Deutsch_, Feb 02 2016
%p A213359 g := add(x^i*add(j*x^j/(1-x^j), j = i+1 .. 80)/((1-x^i)*mul(1-x^j, j = i+1 .. 80)), i = 1 .. 80): gser := series(g, x = 0, 55): seq(coeff(gser, x, n), n = 1 .. 40); # _Emeric Deutsch_, Feb 02 2016
%t A213359 max = 42; gser = Sum[x^i*Sum[j*x^j/(1-x^j), {j, i+1, max}]/((1-x^i)* Product[1-x^j, {j, i+1, max}]), {i, 1, max}]+O[x]^max; CoefficientList[ gser, x] // Rest (* _Jean-François Alcover_, Feb 21 2017, after _Emeric Deutsch_ *)
%Y A213359 Cf. A066186, A092269, A092309, A268189.
%K A213359 nonn
%O A213359 1,3
%A A213359 _Omar E. Pol_, Jan 08 2013