This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213410 #9 Mar 06 2014 12:10:59 %S A213410 1,1,13,7330,185307558,201002187396362,9357300769149011773697, %T A213410 18775362849239140086719414696830, %U A213410 1631039199744298058694966065590003308698494,6159916689356522044764167426829149420348399496664634288 %N A213410 G.f.: exp( Sum_{n>=1} binomial(3*n,n)^n/3^n * x^n/n ). %C A213410 Compare to the g.f. G(x) = 1 + x*G(x)^3 of A001764: G(x) = exp( Sum_{n>=1} binomial(3*n,n)/3 * x^n/n ). %F A213410 a(n) = (1/n) * Sum_{k=1..n} binomial(3*k,k)^k/3^k * a(n-k) for n>0 with a(0)=1. %e A213410 G.f.: A(x) = 1 + x + 13*x^2 + 7330*x^3 + 185307558*x^4 + 201002187396362*x^5 +... %e A213410 where %e A213410 log(A(x)) = x + 5^2*x^2/2 + 28^3*x^3/3 + 165^4*x^4/4 + 1001^5*x^5/5 + 6188^6*x^6/6 + 38760^7*x^7/7 +...+ A025174(n)^n*x^n/n +... %t A213410 nmax = 10; b = ConstantArray[0, nmax+1]; b[[1]] = 1; Do[b[[n+1]] = 1/n*Sum[Binomial[3*k,k]^k/3^k * b[[n-k+1]], {k, 1, n}], {n, 1, nmax}]; b (* _Vaclav Kotesovec_, Mar 06 2014 *) %o A213410 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, binomial(3*m, m)^m/3^m*x^m/m)+x*O(x^n)), n)} %o A213410 for(n=0,15,print1(a(n),", ")) %Y A213410 Cf A213409, A001764, A025174, A200002. %K A213410 nonn %O A213410 0,3 %A A213410 _Paul D. Hanna_, Jun 10 2012