This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213420 #7 Oct 15 2019 07:41:46 %S A213420 4,15,35,39,51,95,115,87,155,111,123,215,235,159,371,183,302,335,219, %T A213420 511,395,415,267,623,291,303,482,327,339,791,554,1415,635,655,411,695, %U A213420 662,447,698,471,734,815,835,519,1211,543,842,1991,579,591,914,2167,2587 %N A213420 Smallest number k such that the sum of prime factors of k (counted with multiplicity) is n times a square > 1. %C A213420 Smallest k such that sopfr(k) = n*q^2. %C A213420 a(n) = A213386(n), except for n = 1, 105, 173, 213, 227, 287, … %H A213420 Amiram Eldar, <a href="/A213420/b213420.txt">Table of n, a(n) for n = 1..10000</a> %e A213420 a(105) = 3764 because 3764 = 2^2 * 941 and the sum of prime factors (counted with multiplicity) is 4 + 941 = 945 = 105*9 where 9 is a square. %p A213420 with(numtheory): %p A213420 sopfr:= proc(n) option remember; %p A213420 add(i[1]*i[2], i=ifactors(n)[2]) %p A213420 end: %p A213420 a:= proc(n) local k, p; %p A213420 for k from 2 while irem(sopfr(k), n, 'p')>0 or %p A213420 sqrt(p)<>floor(sqrt(p)) or p=1 do od; k %p A213420 end: %p A213420 seq (a(n), n=1..100); %Y A213420 Cf. A213386, A212401. %K A213420 nonn %O A213420 1,1 %A A213420 _Michel Lagneau_, Jun 11 2012