cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213422 G.f. satisfies: A( A(x) - 4*A(x)^2 ) = x.

This page as a plain text file.
%I A213422 #55 Nov 20 2024 15:56:15
%S A213422 0,1,2,12,96,880,8720,90752,975936,10737152,120093056,1360051456,
%T A213422 15556087296,179424700416,2084953411584,24393551634432,
%U A213422 287204585508864,3400978267127808,40480500900446208,484006813958356992,5810240353159839744,70001749695581061120
%N A213422 G.f. satisfies: A( A(x) - 4*A(x)^2 ) = x.
%C A213422 First negative term is a(45).
%H A213422 Alois P. Heinz, <a href="/A213422/b213422.txt">Table of n, a(n) for n = 0..200</a>
%H A213422 Dmitry Kruchinin and Vladimir Kruchinin, <a href="http://arxiv.org/abs/1302.1986">Method for solving an iterative functional equation A^{2^n}(x)=F(x)</a>, arXiv:1302.1986 [math.CO], 2013.
%F A213422 G.f. satisfies: A(A(x)) = (1 - sqrt(1-16*x))/8.
%F A213422 G.f. satisfies: A(A(x)) = x + 4*A(A(x))^2.
%F A213422 a(n) = T(n,1), T(n,m) = 1/2*(4^(n-m)*m/n*C(2*n-m-1,n-1)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. [_Dmitry Kruchinin_, Dec 02 2012]
%e A213422 G.f.: A(x) = x + 2*x^2 + 12*x^3 + 96*x^4 + 880*x^5 + 8720*x^6 + 90752*x^7 +...
%e A213422 where
%e A213422 A(A(x)) = x + 4*x^2 + 32*x^3 + 320*x^4 + 3584*x^5 + 43008*x^6 + 540672*x^7 +...+ A000108(n-1)*4^(n-1)*x^n +...
%e A213422 The series reversion of the g.f. A(x) begins:
%e A213422 A(x) - 4*A(x)^2 = x - 2*x^2 - 4*x^3 - 16*x^4 - 80*x^5 - 432*x^6 - 2304*x^7 -...
%t A213422 max = 21; a[0] = 0; a[1] = 1; f[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[f[f[x]] - (1 - Sqrt[1 - 16*x])/8 , {x, 0, max}]; coes = CoefficientList[se, x]; sol = Solve[Thread[coes == 0]]; Table[a[n], {n, 1, max}] /. sol // First (* _Jean-François Alcover_, Feb 19 2013, from 1st formula *)
%t A213422 T[0, 1]=0; T[n_, n_]=1; T[n_, m_]:= T[n, m]= 1/2*(4^(n-m)* m/n * Binomial[2*n-m-1, n-1] - Sum[T[n, i]*T[i, m], {i, m+1, n-1}]);
%t A213422 a[n_] := T[n, 1];
%t A213422 Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Jan 11 2018, after _Dmitry Kruchinin_ *)
%o A213422 (PARI) {a(n)=local(A, B, F); A=x+2*x^2; if(n<1, 0, for(i=0, n, B=subst(A,x,A+x*O(x^n)); B=x+4*B^2; F=serreverse(A+x*O(x^n)); A=(A+subst(B, x, F))/2); polcoeff(A, n, x))}
%o A213422 for(n=1,31,print1(a(n),", "))
%o A213422 (Maxima)
%o A213422 T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*m/n*binomial(2*n-m-1,n-1) -sum(T(n,i) *T(i,m), i,m+1,n-1));
%o A213422 makelist(T(n,1),n,1,10); /* _Dmitry Kruchinin_, Dec 02 2012 */
%o A213422 (SageMath)
%o A213422 @CachedFunction
%o A213422 def T(n,k):
%o A213422     if (k<0 or k>n): return 0
%o A213422     elif (n==0): return 0
%o A213422     elif (k==n): return 1
%o A213422     else: return 2^(2*n-2*k-1)*(k/(2*n-k))*binomial(2*n-k, n) - (1/2)*sum( T(n, n-j-1)*T(n-j-1, k) for j in range(n-k-1) )
%o A213422 def A213422(n): return T(n,1)
%o A213422 [A213422(n) for n in range(31)] # _G. C. Greubel_, Mar 08 2023
%Y A213422 Cf. A000108, A107700, A307103.
%K A213422 sign
%O A213422 0,3
%A A213422 _Paul D. Hanna_, Jun 29 2012