A213426 Irregular array T(n,k) of numbers/2 of non-extendable (complete) non-self-adjacent simple paths of each length within a square lattice bounded by rectangles with nodal dimensions n and 9, n >= 2.
4, 4, 6, 10, 14, 20, 30, 44, 60, 60, 28, 2, 4, 8, 16, 22, 54, 70, 152, 238, 416, 574, 810, 642, 760, 456, 320, 136, 72, 8, 4, 8, 20, 40, 84, 126, 268, 418, 1014, 1450, 2890, 3510, 5474, 5286, 7238, 6926, 8218, 5636, 6754, 2956, 4220, 778, 48
Offset: 2
Examples
T(2,3) = One half of the number of complete non-self-adjacent simple paths of length 3 nodes within a square lattice bounded by a 2 X 9 node rectangle.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Comments