This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213427 #23 May 02 2016 12:28:41 %S A213427 1,1,2,6,18,74,314,1614,8650,52794,337410,2373822,17327770,136539154, %T A213427 1115206818,9671306438,86529147794,816066328602,7904640819682, %U A213427 80089651530566,832008919174434,8983256694817802,99219778649809162,1134999470682805134,13241030890523397154 %N A213427 Number of ways of refining the partition n^1 to get 1^n. %C A213427 Consider the ranked poset L(n) of partitions defined in A002846. Add additional edges from each partition to any other partition that is a refinement of it. In L(5), for example, we add edges from 5^1 to 31^2, 2^21, 21^3 and 1^5, from 41 to 21^3 and 1^5, and so on. %C A213427 Then a(n) is the total number of paths in the augmented poset of any length from n^1 to 1^n. %H A213427 Alois P. Heinz, <a href="/A213427/b213427.txt">Table of n, a(n) for n = 1..40</a> %H A213427 Olivier Gérard, <a href="/A002846/a002846.png">The ranked posets L(2),...,L(8)</a> %p A213427 b:= proc(l) option remember; local i, j, n, t; n:=nops(l); %p A213427 `if`(n<2, {[0]}, `if`(l[-1]=0, b(subsop(n=NULL, l)), {l, %p A213427 seq(`if`(l[i]=0, {}[], {seq(b([seq(l[t]-`if`(t=1, l[t], %p A213427 `if`(t=i, 1, `if`(t=j and t=i-j, -2, `if`(t=j or t=i-j, %p A213427 -1, 0)))), t=1..n)])[], j=1..i/2)}[]), i=2..n)})) %p A213427 end: %p A213427 p:= proc(l) option remember; %p A213427 `if`(nops(l)=1, 1, add(p(x), x=b(l) minus {l})) %p A213427 end: %p A213427 a:= n-> p([0$(n-1), 1]): %p A213427 seq(a(n), n=1..25); # _Alois P. Heinz_, Jun 12 2012 %Y A213427 Cf. A002846, A213242, A213385. %K A213427 nonn %O A213427 1,3 %A A213427 _N. J. A. Sloane_, Jun 11 2012 %E A213427 More terms from _Alois P. Heinz_, Jun 11 2012 %E A213427 Edited by _Alois P. Heinz_ at the suggestion of _Gus Wiseman_, May 02 2016