A213431 Irregular array T(n,k) of the numbers of distinct shapes under rotation of the non-extendable (complete) non-self-adjacent simple paths of each length within a square lattice bounded by rectangles with nodal dimensions n and 2, n >= 2.
2, 2, 4, 2, 2, 4, 6, 6, 2, 4, 6, 10, 10, 2, 2, 4, 6, 10, 14, 16, 8, 2, 4, 6, 10, 14, 20, 26, 18, 2, 2, 4, 6, 10, 14, 20, 30, 40, 34, 10, 2, 4, 6, 10, 14, 20, 30, 44, 60, 60, 28, 2, 2, 4, 6, 10, 14, 20, 30, 44, 64, 90, 100, 62, 12
Offset: 2
Examples
T(2,3) = The number of distinct shapes under rotation of the complete non-self-adjacent simple paths of length 3 nodes within a square lattice bounded by a 2 X 2 node rectangle.
Links
- C. H. Gribble, Computed characteristics of complete non-self-adjacent paths in a square lattice bounded by various sizes of rectangle.
- C. H. Gribble, Computes characteristics of complete non-self-adjacent paths in square and cubic lattices bounded by various sizes of rectangle and rectangular cuboid respectively.
Formula
The asymptotic sequence for the number of distinct shapes under rotation of the complete non-self-adjacent simple paths of each nodal length k for n >> 0 appears to be 2*A097333(2:), that is, 2*(Sum(j=0..k-2, C(k-2-j, floor(j/2)))), for k >= 4.
Comments