cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213431 Irregular array T(n,k) of the numbers of distinct shapes under rotation of the non-extendable (complete) non-self-adjacent simple paths of each length within a square lattice bounded by rectangles with nodal dimensions n and 2, n >= 2.

Original entry on oeis.org

2, 2, 4, 2, 2, 4, 6, 6, 2, 4, 6, 10, 10, 2, 2, 4, 6, 10, 14, 16, 8, 2, 4, 6, 10, 14, 20, 26, 18, 2, 2, 4, 6, 10, 14, 20, 30, 40, 34, 10, 2, 4, 6, 10, 14, 20, 30, 44, 60, 60, 28, 2, 2, 4, 6, 10, 14, 20, 30, 44, 64, 90, 100, 62, 12
Offset: 2

Views

Author

Keywords

Comments

The irregular array of numbers is:
....k..3...4...5...6...7...8...9..10..11..12..13..14..15
..n
..2....2
..3....2...4...2
..4....2...4...6...6
..5....2...4...6..10..10...2
..6....2...4...6..10..14..16...8
..7....2...4...6..10..14..20..26..18...2
..8....2...4...6..10..14..20..30..40..34..10
..9....2...4...6..10..14..20..30..44..60..60..28...2
.10....2...4...6..10..14..20..30..44..64..90.100..62..12
where k is the path length in nodes. In an attempt to define the irregularity of the array, it appears that the maximum value of k is n + floor((n+1)/2) for n >= 2. Reading this array by rows gives the sequence.

Examples

			T(2,3) = The number of distinct shapes under rotation of the complete non-self-adjacent simple paths of length 3 nodes within a square lattice bounded by a 2 X 2 node rectangle.
		

Crossrefs

Formula

The asymptotic sequence for the number of distinct shapes under rotation of the complete non-self-adjacent simple paths of each nodal length k for n >> 0 appears to be 2*A097333(2:), that is, 2*(Sum(j=0..k-2, C(k-2-j, floor(j/2)))), for k >= 4.