A213449 Denominators of higher order Bernoulli numbers.
1, 12, 240, 4032, 34560, 101376, 50319360, 6635520, 451215360, 42361159680, 1471492915200, 1758147379200, 417368899584000, 15410543984640, 141874849382400, 28026642660065280, 922166952040857600, 19725496300339200, 2163255728265599385600, 36926129074234982400
Offset: 0
Examples
From _Peter Luschny_, Oct 01 2016: (Start) The sequence of polynomials starts: 1, (1/12*(3*x-1))*x, (1/240*(15*x^3-30*x^2+5*x+2))*x, (1/4032*(63*x^5-315*x^4+315*x^3+91*x^2-42*x-16))*x, (1/34560*(135*x^7-1260*x^6+3150*x^5-840*x^4-2345*x^3-540*x^2+404*x+144))*x. (End)
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer, 1924, p. 459.
Crossrefs
Programs
-
Maple
B := proc(v,n) option remember; `if`(v = 0,1, simplify(-(n/v)*add((-1)^s*binomial(v,s)*bernoulli(s)*B(v-s,n),s=1..v))) end: A213449 := n -> denom(B(2*n, k)): seq(A213449(n), n=0..19); # Peter Luschny, Oct 01 2016
-
Mathematica
Table[NorlundB[2n, x] // Together // Denominator, {n, 0, 19}] (* Jean-François Alcover, Jun 29 2019 *)
Extensions
Name corrected and more terms added by Peter Luschny, Oct 01 2016
Comments