cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213478 Irregular array T(n,k) of the numbers of non-extendable (complete) non-self-adjacent simple paths starting at each of a minimal subset of nodes within a square lattice bounded by rectangles with nodal dimensions n and 2, n >= 2.

Original entry on oeis.org

2, 3, 4, 5, 5, 8, 7, 6, 13, 10, 8, 21, 15, 11, 10, 34, 23, 16, 13, 55, 36, 24, 18, 16, 89, 57, 37, 26, 21, 144, 91, 58, 39, 29, 26, 233, 146, 92, 60, 42, 34, 377, 235, 147, 94, 63, 47, 42, 610, 379, 236, 149, 97, 68, 55, 987, 612, 380, 238, 152, 102, 76, 68, 1597, 989, 613, 382, 241, 157, 110, 89
Offset: 2

Views

Author

Keywords

Comments

The subset of nodes approximately defines the top left-hand quarter of the rectangle and has nodal dimensions floor((n+1)/2) and 1 to capture all geometrically distinct counts.
The quarter-rectangle is read by rows.
The irregular array of numbers is:
....k.....1...2...3...4...5...6...7...8
..n
..2.......2
..3.......3...4
..4.......5...5
..5.......8...7...6
..6......13..10...8
..7......21..15..11..10
..8......34..23..16..13
..9......55..36..24..18..16
.10......89..57..37..26..21
.11.....144..91..58..39..29..26
.12.....233.146..92..60..42..34
.13.....377.235.147..94..63..47..42
.14.....610.379.236.149..97..68..55
.15.....987.612.380.238.152.102..76..68
.16....1597.989.613.382.241.157.110..89
where k indicates the position of the start node in the quarter-rectangle. For each n, the maximum value of k is floor((n+1)/2). Reading this array by rows gives the sequence.

Examples

			When n = 2, the number of times (NT) each node in the rectangle is the start node (SN) of a complete non-self-adjacent simple path is
SN 0 1
   2 3
NT 2 2
   2 2
To limit duplication, only the top left-hand corner 2 is stored in the sequence, i.e. T(2,1) = 2.
		

Crossrefs

Formula

Let T(n,k) denote an element of the irregular array then it appears that
T(n,k) = A000045(n-k+2), k = 0
T(n,k) = A000045(n-k+2) + A000045(k+1), k > 0.

Extensions

Improved Comments