This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213490 #14 Feb 19 2024 10:27:26 %S A213490 0,0,0,0,0,12,38,92,160,286,422,632,870,1194,1542,2010,2502,3126,3788, %T A213490 4598,5446,6472,7532,8786,10092,11604,13164,14964,16812,18912,21074, %U A213490 23504,25996,28786,31634,34796,38034,41598,45234,49230,53298 %N A213490 Number of (w,x,y) with all terms in {0,...,n} and the numbers w,x,y,|w-x|,|x-y| distinct. %C A213490 For a guide to related sequences, see A212959. %H A213490 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,-1). %F A213490 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10). %F A213490 G.f.: (12*x^5 + 26*x^6 + 42*x^7 + 30*x^8 + 34*x^9)/(1 - x - x^2 + 2*x^5 - x^8 - x^9 + x^10). %F A213490 a(n) = (n+1)^3 - A213491(n). %t A213490 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A213490 (Do[If[Length[Union[{w, x, y, Abs[w - x], %t A213490 Abs[x - y]}]] == 5, %t A213490 s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; %t A213490 m = Map[t[#] &, Range[0, 60]] (* this sequence *) %t A213490 LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 0, 12, 38, 92, 160, 286}, 60] %t A213490 m/2 (* integers *) %Y A213490 Cf. A212959, A213491. %K A213490 nonn,easy %O A213490 0,6 %A A213490 _Clark Kimberling_, Jun 13 2012