A213491 Number of (w,x,y) with all terms in {0,...,n} and the numbers w,x,y,|w-x|,|x-y| not distinct.
1, 8, 27, 64, 125, 204, 305, 420, 569, 714, 909, 1096, 1327, 1550, 1833, 2086, 2411, 2706, 3071, 3402, 3815, 4176, 4635, 5038, 5533, 5972, 6519, 6988, 7577, 8088, 8717, 9264, 9941, 10518, 11241, 11860, 12619, 13274, 14085, 14770, 15623
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1).
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Length[Union[{w, x, y, Abs[w - x], Abs[x - y]}]] < 5, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 60]] (* or *) LinearRecurrence[{0, 1, 1, 1, -1, -1, -1, 0, 1}, {1, 8, 27, 64, 125, 204, 305, 420, 569}, 60]
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9).
G.f.: (1 + 8*x + 26*x^2 + 55*x^3 + 89*x^4 + 106*x^5 + 98*x^6 + 63*x^7 + 34*x^8)/(1 - x^2 - x^3 - x^4 + x^5 + x^6 + x^7 - x^9).
a(n) = (n+1)^3 - A213490(n).
Comments