This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213493 #15 Feb 19 2024 10:27:23 %S A213493 0,0,0,0,0,0,12,48,96,204,300,480,684,972,1260,1692,2124,2700,3288, %T A213493 4044,4812,5784,6744,7932,9144,10584,12024,13752,15480,17496,19524, %U A213493 21864,24216,26916,29604,32664,35748,39204,42660,46548,50436,54756 %N A213493 Number of (w,x,y) with all terms in {0,...,n} and the numbers w,x,y,|w-x|,|x-y|,|y-w| distinct. %C A213493 Every term is divisible by 12; see A213494. %C A213493 For a guide to related sequences, see A212959. %H A213493 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-2,0,0,1,1,-1). %F A213493 a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10). %F A213493 G.f.: 12*(x^6 + 3*x^7 + 3*x^8 + 5*x^9)/(1 - x - x^2 + 2*x^5 - x^8 - x^9 + x^10). %t A213493 t = Compile[{{n, _Integer}}, Module[{s = 0}, %t A213493 (Do[If[Length[Union[{w, x, y, Abs[w - x], Abs[x - y], Abs[y - w]}]] == %t A213493 6, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; %t A213493 m = Map[t[#] &, Range[0, 60]] (* this sequence *) %t A213493 m/12 (* A213494 *) %t A213493 LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 12, 48, 96, 204}, 60] %Y A213493 Cf. A212959, A213494. %K A213493 nonn,easy %O A213493 0,7 %A A213493 _Clark Kimberling_, Jun 13 2012