cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213505 Rectangular array: (row n) = b**c, where b(h) = h^2, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 8, 4, 34, 25, 9, 104, 88, 52, 16, 259, 234, 170, 89, 25, 560, 524, 424, 280, 136, 36, 1092, 1043, 899, 674, 418, 193, 49, 1968, 1904, 1708, 1384, 984, 584, 260, 64, 3333, 3252, 2996, 2555, 1979, 1354, 778, 337, 81, 5368, 5268, 4944, 4368, 3584
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2012

Keywords

Comments

Principal diagonal: A213546.
Antidiagonal sums: A213547.
Row 1, (1,4,9,...)**(1,4,9,...): A033455.
Row 2, (1,4,9,...)**(4,9,16,...): (k^5 + 10*k^4 + 40*k^3 + 50*k^2 +19*k)/30.
Row 3, (1,4,9,...)**(9,16,25,...): (k^5 + 15*k^4 + 90*k^3 + 120*k^2+44*k)/30.
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....8.....34....104...259....560
4....25....88....234...524....1043
9....52....170...424...899....1708
16...89....280...674...1384...2555
25...136...418...984...1979...3584
...
T(5,1) = (1)**(25) = 25
T(5,2) = (1,4)**(25,36) = 1*36+4*25 = 136
T(5,3) = (1,4,9)**(25,36,49) = 1*49+4*36+9*25 = 418
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n^2; c[n_] := n^2
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213505 *)
    d = Table[t[n, n], {n, 1, 40}] (* A213546 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A213547 *)

Formula

T(n,k) = 6*T(n,k-1) - 15*T(n,k-2) + 20*T(n,k-3) - 15*T(n,k-4) + 6*T(n,k-5) - T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = n^2 - (n^2 - 2*n - 1)*x - (n^2 - 2)*x^2 - ((n - 1)^2)*x^3 and g(x) = (1 - x)^6.