This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213548 #14 Oct 05 2016 08:39:24 %S A213548 1,5,3,15,12,6,35,31,22,10,70,65,53,35,15,126,120,105,81,51,21,210, %T A213548 203,185,155,115,70,28,330,322,301,265,215,155,92,36,495,486,462,420, %U A213548 360,285,201,117,45,715,705,678,630,560,470,365,253,145,55,1001 %N A213548 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = m(m+1)/2, m = n-1+h, n>=1, h>=1, and ** = convolution. %C A213548 Principal diagonal: A213549. %C A213548 Antidiagonal sums: A051836. %C A213548 Row 1, (1,2,3,...)**(1,3,6,...): A000332. %C A213548 Row 2, (1,2,3,...)**(3,6,10,...): A005718. %C A213548 Row 3, (1,2,3,...)**(6,10,15,...): k*(k+1)*(k^2 + 13*k + 58)/24. %C A213548 For a guide to related arrays, see A213500. %H A213548 Clark Kimberling, <a href="/A213548/b213548.txt">Antidiagonals n = 1..60</a> %F A213548 T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5). %F A213548 G.f. for row n: f(x)/g(x), where f(x) = n*(n+1) - 2*((n-1)^2)*x + n*(n-1)*x^2 and g(x) = 2*(1 - x)^5. %e A213548 Northwest corner (the array is read by falling antidiagonals): %e A213548 . 1, 5, 15, 35, 70, ... %e A213548 . 3, 12, 31, 65, 120, ... %e A213548 . 6, 22, 53, 105, 185, ... %e A213548 . 10, 35, 81, 155, 265, ... %e A213548 . 15, 51, 115, 215, 360, ... %e A213548 . 21, 70, 155, 285, 470, ... %e A213548 ... %e A213548 T(5,1) = (1)**(15) = 15; %e A213548 T(5,2) = (1,2)**(15,21) = 1*21 + 2*15 = 51; %e A213548 T(5,3) = (1,2,3)**(15,21,28) = 1*28 + 2*21 + 3*15 = 115; %e A213548 T(4,4) = (1,2,3,4)**(10,15,21,28) = 1*28 + 2*21 + 3*15 + 4*10 = 155. %t A213548 b[n_] := n; c[n_] := n (n + 1)/2 %t A213548 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A213548 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213548 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A213548 r[n_] := Table[t[n, k], {k, 1, 60}] (* A213548 *) %t A213548 d = Table[t[n, n], {n, 1, 40}] (* A213549 *) %t A213548 s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] %t A213548 s1 = Table[s[n], {n, 1, 50}] (* A051836 *) %Y A213548 Cf. A213500. %K A213548 nonn,tabl,easy %O A213548 1,2 %A A213548 _Clark Kimberling_, Jun 16 2012