This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213581 #26 Sep 08 2022 08:46:02 %S A213581 1,8,36,124,367,988,2498,6048,14197,32576,73472,163508,360027,785908, %T A213581 1703294,3669240,7863393,16776120,35650300,75495980,159381831, %U A213581 335542348,704640826,1476392464,3087004877,6442447728,13421769208 %N A213581 Antidiagonal sums of the convolution array A213571. %H A213581 Clark Kimberling, <a href="/A213581/b213581.txt">Table of n, a(n) for n = 1..500</a> %H A213581 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (8,-26,44,-41,20,-4). %F A213581 a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6). %F A213581 G.f.: f(x)/g(x), where f(x) = x*(1 - 2*x^2) and g(x) = (1 - x)^4*(1 - 2*x)^2. %F A213581 a(n) = 8 +(n-2)*2^(n+2) -(n-2)*n*(n+5)/6. - _Bruno Berselli_, Jul 09 2012 %t A213581 (* First Program *) %t A213581 b[n_]:= n; c[n_]:= -1 + 2^n; %t A213581 t[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}] %t A213581 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213581 Flatten[Table[t[n-k+1, k], {n, 12}, {k, n, 1, -1}]] %t A213581 r[n_]:= Table[t[n, k], {k, 1, 60}] (* A213571 *) %t A213581 d = Table[t[n, n], {n, 1, 40}] (* A213572 *) %t A213581 s[n_]:= Sum[t[i, n+1-i], {i, 1, n}] %t A213581 s1 = Table[s[n], {n, 1, 50}] (* A213581 *) %t A213581 (* Second program *) %t A213581 Table[2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6, {n,35}] (* _G. C. Greubel_, Jul 26 2019 *) %o A213581 (PARI) vector(35, n, 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6) \\ _G. C. Greubel_, Jul 26 2019 %o A213581 (Magma) [2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6: n in [1..35]]; // _G. C. Greubel_, Jul 26 2019 %o A213581 (Sage) [2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6 for n in (1..35)] # _G. C. Greubel_, Jul 26 2019 %o A213581 (GAP) List([1..35], n-> 2^(n+2)*(n-2) - (n^3+3*n^2-10*n-48)/6); # _G. C. Greubel_, Jul 26 2019 %Y A213581 Cf. A213571, A213500. %K A213581 nonn,easy %O A213581 1,2 %A A213581 _Clark Kimberling_, Jun 19 2012