cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213593 Stirling transform of the first kind of the Lucas numbers A000032.

This page as a plain text file.
%I A213593 #25 Sep 08 2022 08:46:02
%S A213593 2,1,2,-3,10,-45,250,-1645,12490,-107415,1031690,-10943955,127058690,
%T A213593 -1602400085,21812913650,-318763741725,4977247397650,-82695799908975,
%U A213593 1456703469048850,-27117356172328675,531930264143933050
%N A213593 Stirling transform of the first kind of the Lucas numbers A000032.
%H A213593 G. C. Greubel, <a href="/A213593/b213593.txt">Table of n, a(n) for n = 0..445</a>
%H A213593 Jiaqiang Pan, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Pan/pan19.html">Matrix Decomposition of the Unified Generalized Stirling Numbers and Inversion of the Generalized Factorial Matrices</a>, Journal of Integer Sequences 15 (2012) #12.6.6
%F A213593 a(0)=2; for n=1,2,3, ..., a(n) = r*(r-1)*(r-2)*...*(r-n+1) + s*(s-1)*(s-2)*...*(s-n+1), where r=(1+sqrt(5))/2 and s=(1-sqrt(5))/2.
%F A213593 From _Vladimir Reshetnikov_, Oct 20 2015: (Start)
%F A213593 Let phi=(1+sqrt(5))/2.
%F A213593 a(n) = Gamma(2-phi)/Gamma(2-phi-n)+Gamma(1+phi)/Gamma(1+phi-n).
%F A213593 Recurrence: a(0)=2, a(1)=1, a(n+2) = (1+n-n^2)*a(n) - 2*n*a(n+1).
%F A213593 E.g.f.: (1+(x+1)^sqrt(5))/(x+1)^(1/phi).
%F A213593 (End)
%F A213593 a(n) ~ (-1)^n * n! * n^((sqrt(5)-3)/2) / Gamma(2/(1+sqrt(5))). - _Vaclav Kotesovec_, Oct 21 2015
%F A213593 a(n) = Sum_{k=1..n} Stirling1(n,k)*Lucas(k). - _G. C. Greubel_, Jul 06 2019
%e A213593 For n=4, a(4) = r*(r-1)*(r-2)*(r-3) + s*(s-1)*(s-2)*(s-3) = 10.
%p A213593 A000032 := proc(n)
%p A213593         combinat[fibonacci](n+1)+combinat[fibonacci](n-1) ;
%p A213593 end proc:
%p A213593 A213593 := proc(n)
%p A213593         add(combinat[stirling1](n,i)*A000032(i),i=0..n) ;
%p A213593 end proc:
%p A213593 seq(A213593(n),n=0..20) ; # _R. J. Mathar_, Jun 26 2012
%t A213593 Expand@FunctionExpand@Table[Gamma[2 - GoldenRatio]/Gamma[2 - GoldenRatio - n] + Gamma[1 + GoldenRatio]/Gamma[1 - n + GoldenRatio], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 20 2015 *)
%t A213593 Table[If[n==0, 2, Sum[StirlingS1[n, k]*LucasL[k], {k, n}]], {n, 0, 25}] (* _G. C. Greubel_, Jul 06 2019 *)
%o A213593 (PARI) lucas(n) = fibonacci(n+1) + fibonacci(n-1);
%o A213593 vector(25, n, n--; if(n==0, 2, sum(k=1,n, stirling(n,k,1)*lucas(k)) )) \\ _G. C. Greubel_, Jul 06 2019
%o A213593 (Magma) [2] cat [(&+[StirlingFirst(n,k)*Lucas(k): k in [1..n]]): n in [1..25]]; // _G. C. Greubel_, Jul 06 2019
%o A213593 (Sage) [2]+[sum((-1)^(n-k)*stirling_number1(n,k)*lucas_number2(k,1,-1) for k in (1..n)) for n in (1..25)] # _G. C. Greubel_, Jul 06 2019
%o A213593 (GAP) Concatenation([2], List([1..25], n-> Sum([1..n], k-> (-1)^(n-k)* Stirling1(n, k)*Lucas(1,-1,k)[2] ))) # _G. C. Greubel_, Jul 06 2019
%Y A213593 Cf. A000032 (Lucas numbers), the general-term formula of which is L(n) = r^n + s^n.
%Y A213593 Cf. A008275, A323620.
%K A213593 sign
%O A213593 0,1
%A A213593 _Jiaqiang Pan_, Jun 15 2012