This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213615 #11 Nov 07 2012 18:10:13 %S A213615 1,2,-1,6,-6,1,2,-3,1,0,30,-60,30,0,-1,6,-15,10,0,-1,0,42,-126,105,0, %T A213615 -21,0,1,6,-21,21,0,-7,0,1,0,30,-120,140,0,-70,0,20,0,-1,10,-45,60,0, %U A213615 -42,0,20,0,-3,0,66,-330,495,0,-462,0,330,0,-99,0,5,6,-33 %N A213615 Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in descending order of powers. %H A213615 T. D. Noe, <a href="/A213615/b213615.txt">Rows n = 0..100 of triangle, flattened</a> %H A213615 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers">The Computation and Asymptotics of the Bernoulli numbers.</a> %F A213615 T(n,k) = A144845(n)*[x^(n-k)]B{n}(x). %e A213615 b(0,x) = 1 %e A213615 b(1,x) = 2*x - 1 %e A213615 b(2,x) = 6*x^2 - 6*x + 1 %e A213615 b(3,x) = 2*x^3 - 3*x^2 + x %e A213615 b(4,x) = 30*x^4 - 60*x^3 + 30*x^2 - 1 %e A213615 b(5,x) = 6*x^5 - 15*x^4 + 10*x^3 - x %p A213615 seq(seq(coeff(denom(bernoulli(i,x))*bernoulli(i,x),x,i-j),j=0..i),i=0..12); %t A213615 Flatten[Table[p = Reverse[CoefficientList[BernoulliB[n, x], x]]; (LCM @@ Denominator[p])*p, {n, 0, 10}]] (* _T. D. Noe_, Nov 07 2012 *) %Y A213615 Cf. A053383, A144845, A213616. %K A213615 sign,tabl %O A213615 0,2 %A A213615 _Peter Luschny_, Jun 16 2012