A213623 Numbers n such that the denominator of the Bernoulli polynomial B(n,x) equals the Clausen number C(n), {n | A144845(n) = A141056(n)}.
0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 24, 28, 30, 36, 48, 60, 120
Offset: 0
Programs
-
Maple
# Clausen(n, k) defined in A160014. seq(`if`(denom(bernoulli(i,x))=Clausen(i,1),i,NULL), i=0..120);
-
Mathematica
Clausen[n_, k_] := If[n == 0, 1, Times @@ (Select[Divisors[n], PrimeQ[# + k]&] + k)]; Select[Range[0, 120], Denominator[BernoulliB[#, x] // Together] == Clausen[#, 1]&] (* Jean-François Alcover, Aug 13 2019 *)
Comments