This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213636 #33 Feb 22 2023 18:12:52 %S A213636 1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,4,1,2,1,1,1,2,1,2,1,1, %T A213636 1,1,1,2,1,1,1,2,1,2,1,1,1,3,1,2,1,1,1,2,1,2,1,1,1,4,1,2,1,1,1,2,1,2, %U A213636 1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,4,1,2,1,1,1,2,1,2,1,1,1,1,1,2,1 %N A213636 Remainder when n is divided by its least nondivisor. %C A213636 Experimentation suggests that every positive integer occurs in this sequence and that %C A213636 2 occurs only in even numbered positions, %C A213636 3 occurs in only in positions that are multiples of 12, %C A213636 4 occurs only in positions that are multiples of 12, %C A213636 5 occurs only in positions that are multiples of 60, %C A213636 6 occurs only in positions that are multiples of 60, %C A213636 7 occurs only in positions that are multiples of 2520, etc. %C A213636 See A213637 for positions of 1 and A213638 for positions of 2. %C A213636 From _Robert Israel_, Jul 28 2017: (Start) %C A213636 Given any positive number m, let q be a prime > m and r = A003418(q-1). Then a(n) = m if n == m (mod q) and n == 0 (mod r). By the Chinese Remainder Theorem, such n exists. %C A213636 On the other hand, if a(n) = m, we must have A007978(n) > m, and then n must be divisible by A003418(q-1) where q = A007978(n) is a member of A000961 greater than m. Moreover, if q=p^j with j>1, n is divisible by p^(j-1) so m must be divisible by p^(j-1). Thus: %C A213636 For m=2, A003418(2)=2. %C A213636 For m=3, A007978(n) can't be 4 because m is odd, so A007978(n)>= 5 and n must be divisible by A003418(4)=12. %C A213636 For m=4, A003418(4)=12. %C A213636 For m=5 or 6, A003418(6)=60. %C A213636 For m=7, A007978(n) can't be 8 because m is odd, and can't be 9 because m is not divisible by 3, so n must be divisible by A003418(10)=2520. (End) %H A213636 Antti Karttunen, <a href="/A213636/b213636.txt">Table of n, a(n) for n = 1..10000</a> %F A213636 a(n) = n - A213635(n). %F A213636 a(n) = n - m(n)*floor(n/m(n)), where m(n) = A007978(n). %e A213636 a(10) = 10-3*[10/3] = 1. %p A213636 f:= proc(n) local k; %p A213636 for k from 2 do if n mod k <> 0 then return n mod k fi od %p A213636 end proc: %p A213636 map(f, [$1..100]); # _Robert Israel_, Jul 27 2017 %t A213636 y=120; z=2000; %t A213636 t = Table[k := 1; While[Mod[n, k] == 0, k++]; %t A213636 k, {n, 1, z}] (*A007978*) %t A213636 Table[Floor[n/t[[n]]], {n, 1, y}] (*A213633*) %t A213636 Table[n - Floor[n/t[[n]]], {n, 1, y}] (*A213634*) %t A213636 Table[t[[n]]*Floor[n/t[[n]]], {n, 1, y}] (*A213635*) %t A213636 t1 = Table[n - t[[n]]*Floor[n/t[[n]]], %t A213636 {n, 1, z}] (* A213636 *) %t A213636 Flatten[Position[t1, 1]] (* A213637 *) %t A213636 Flatten[Position[t1, 2]] (* A213638 *) %t A213636 rem[n_]:=Module[{lnd=First[Complement[Range[n],Divisors[n]]]},Mod[n,lnd]]; Join[{1,2},Array[rem,100,3]] (* _Harvey P. Dale_, Mar 26 2013 *) %t A213636 Table[Mod[n, SelectFirst[Range[n + 1], ! Divisible[n, #] &]], {n, 105}] (* _Michael De Vlieger_, Jul 29 2017 *) %o A213636 (Scheme) (define (A213636 n) (modulo n (A007978 n))) ;; _Antti Karttunen_, Jul 27 2017 %o A213636 (Python) %o A213636 def a(n): %o A213636 k=2 %o A213636 while n%k==0: k+=1 %o A213636 return n%k %o A213636 print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jul 28 2017 %o A213636 (Python) %o A213636 def A213636(n): return next(filter(None, (n%d for d in range(2,n)))) if n>2 else n # _Chai Wah Wu_, Feb 22 2023 %Y A213636 Cf. A000961, A003418, A007978, A213633, A213635, A213637, A213638. %K A213636 nonn %O A213636 1,2 %A A213636 _Clark Kimberling_, Jun 16 2012