This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213640 #13 Jan 10 2014 17:04:06 %S A213640 1,2,12,132,2040,40560,986160,28344960,940222080,35350378560, %T A213640 1485586206720,69006955691520,3510875174526720,194162144086310400, %U A213640 11597083480958976000,744005639375065267200,51024015181398702643200,3725042532308649628876800,288434288836744276094668800 %N A213640 E.g.f. satisfies: A(x) = x - log(1 - A(x)^2). %F A213640 E.g.f. A(x) satisfies: %F A213640 (1) A(x + log(1-x^2)) = x. %F A213640 (2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n / n!. %F A213640 (3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (-log(1-x^2))^n/x / n! ). %F A213640 a(n) = n*A213641(n-1). %F A213640 a(n) ~ sqrt(1-1/sqrt(2)) * n^(n-1) / (exp(n) * (sqrt(2) -1 + log(2*(sqrt(2)-1)))^(n-1/2)). - _Vaclav Kotesovec_, Jan 10 2014 %e A213640 E.g.f: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +... %e A213640 Related series: %e A213640 A(x)^2 = 2*x^2/2! + 12*x^3/3! + 120*x^4/4! + 1800*x^5/5! + 35280*x^6/6! +... %e A213640 -log(1-A(x)^2) = 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +... %t A213640 Rest[CoefficientList[InverseSeries[Series[x + Log[1-x^2],{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 10 2014 *) %o A213640 (PARI) {a(n)=n!*polcoeff(serreverse(x+log(1-x^2 +x*O(x^n))), n)} %o A213640 for(n=1,25,print1(a(n),", ")) %o A213640 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A213640 {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m)/m!); n!*polcoeff(A, n)} %o A213640 (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} %o A213640 {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (-log(1 - x^2+x*O(x^n)))^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)} %Y A213640 Cf. A213641, A218652, A200319. %K A213640 nonn %O A213640 1,2 %A A213640 _Paul D. Hanna_, Jun 17 2012