A213655 Number of dominating subsets of the theta-graph TH(2,2,n) (n>=1). A tribonacci sequence with initial values 13, 23, and 41.
13, 23, 41, 77, 141, 259, 477, 877, 1613, 2967, 5457, 10037, 18461, 33955, 62453, 114869, 211277, 388599, 714745, 1314621, 2417965, 4447331, 8179917, 15045213, 27672461, 50897591, 93615265, 172185317, 316698173, 582498755
Offset: 1
Examples
a(1)=13. TH(2,2,1) is the graph obtained from the cycle ABCD by joining vertices A and C. All 2^4 - 1 = 15 nonempty subsets of {A,B,C,D} are dominating with the exception of {B} and {D}.
References
- S. Alikhani and Y. H. Peng, Dominating sets and domination polynomials of certain graphs, II, Opuscula Math., 30, No. 1, 2010, 37-51.
Links
- S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Crossrefs
Cf. A213654.
Programs
-
Maple
a := proc (n) if n = 1 then 13 elif n = 2 then 23 elif n = 3 then 41 else a(n-1)+a(n-2)+a(n-3) end if end proc: seq(a(n), n = 1 .. 30);
-
Mathematica
LinearRecurrence[{1, 1, 1}, {13, 23, 41}, 30] (* Jean-François Alcover, Dec 02 2017 *)
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 4; a(1)=13, a(2)=23, a(3)=41.
G.f.: -x*(13+10*x+5*x^2)/(-1+x+x^2+x^3). - R. J. Mathar, Jul 22 2022
Comments