This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213666 #31 Feb 16 2025 08:33:17 %S A213666 1,3,1,0,3,8,5,1,0,0,7,20,18,7,1,0,0,0,15,48,56,32,9,1,0,0,0,0,31,112, %T A213666 160,120,50,11,1,0,0,0,0,0,63,256,432,400,220,72,13,1,0,0,0,0,0,0,127, %U A213666 576,1120,1232,840,364,98,15,1 %N A213666 Irregular triangle read by rows: T(n,k) is the number of dominating subsets with k vertices of the graph G(n) obtained by taking n copies of the path P_3 and identifying one of their endpoints (a star with n branches of length 2). %C A213666 Rows also give the coefficients of the domination polynomial of the n-helm graph (divided by x, i.e., with initial 0 dropped from rows). - _Eric W. Weisstein_, May 28 2017 %C A213666 Row n contains 2n + 1 entries (first n-1 of which are 0). %C A213666 Sum of entries in row n = 2*3^{n-1} - 1 = A048473(n). %C A213666 Sum of entries in column k = A213667(k). %H A213666 S. Alikhani and Y. H. Peng, <a href="http://arxiv.org/abs/0905.2251">Introduction to domination polynomial of a graph</a>, arXiv:0905.2251 [math.CO], 2009. %H A213666 É. Czabarka, L. Székely, and S. Wagner, <a href="http://dx.doi.org/10.1016/j.dam.2009.07.004">The inverse problem for certain tree parameters</a>, Discrete Appl. Math., 157, 2009, 3314-3319. %H A213666 T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, <a href="http://arxiv.org/abs/1206.5926">Recurrence relations and splitting formulas for the domination polynomial</a>, arXiv:1206.5926 [math.CO], 2012. %H A213666 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominationPolynomial.html">Domination Polynomial</a>. %H A213666 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HelmGraph.html">Helm Graph</a>. %F A213666 T(n,k) = 2^(2*n-k)*(2*binomial(n,k-n-1)+binomial(n,k-n)) if k > n; T(n,n)=2^n - 1. %F A213666 The generating polynomial of row n is g[n] = g[n,x] = (1+x)(x*(2+x))^n - x^n (= domination polynomial of the graph G(n)). %F A213666 Bivariate g.f.: G(x,z) = x*z*(1+x)*(2+x)/(1-2*x*z-x^2*z)-x*z/(1-xz). %e A213666 Row 2 is 0,3,8,5,1 because G(2) is the path P_5 abcde; no domination subset of size 1, three of size 2 (ad, bd, be), all subsets of size 3 with the exception of abc and cde are dominating (binomial(5,3)-2=8), all binomial(5,4)=5 subsets of size 4 are dominating, and abcde is dominating. %e A213666 Triangle starts: %e A213666 1, 3, 1; %e A213666 0, 3, 8, 5, 1; %e A213666 0, 0, 7, 20, 18, 7, 1; %e A213666 0, 0, 0, 15, 48, 56, 32, 9, 1; %p A213666 T := proc (n, k) if k = n then 2^n-1 else 2^(2*n-k)*(2*binomial(n, k-n-1) + binomial(n, k-n)) end if end proc: for n to 10 do seq(T(n, k), k = 1 .. 2*n+1) end d; # yields sequence in triangular form %t A213666 T[n_, n_] := 2^n - 1; %t A213666 T[n_, k_] := 2^(2*n - k)*(2*Binomial[n, k - n - 1] + Binomial[n, k - n]); %t A213666 Table[T[n, k], {n, 1, 10}, {k, 1, 2*n + 1}] // Flatten (* _Jean-François Alcover_, Dec 02 2017 *) %Y A213666 Cf. A048473, A213667. %K A213666 nonn,tabf %O A213666 1,2 %A A213666 _Emeric Deutsch_, Jul 01 2012