A213686 Numbers which are the values of the quadratic polynomial 13+20*t+24*k+32*k*t at nonnegative integers.
13, 33, 37, 53, 61, 73, 85, 89, 93, 109, 113, 133, 141, 145, 153, 157, 173, 181, 193, 201, 205, 213, 229, 233, 245, 253, 257, 273, 277, 293, 297, 301, 313, 317, 325, 333, 349, 353, 369, 373, 393, 397, 401, 405, 413, 421, 425, 433, 445, 453, 469, 473, 481
Offset: 1
Keywords
Examples
For n=12 the a(12)=133 solutions are {k = 0, t = 6},{k = 5, t = 0}.
References
- I. Gueye and M. Mizony : Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
- M. Mizony and I. Gueye : Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2,p pp 141-150.
Links
- P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
- M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
- Eric W. Weisstein, MathWorld: Twin Pythagorean Triple
- K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
Crossrefs
Programs
-
Maple
G:=(n,p)->4/p = [2*(2*n+1)/(n*p+p+1), 4/p/(n*p+p+1), 2/(n*p+p+1)]: cousin:=proc(p) local n; for n from 0 to 300 do if n*p+p+1 mod 4*(2*n+1)=0 then return([p,n,G(n,p)]);fi: od: end: L:=NULL:for m to 400 do L:=L,cousin(4*m+1): od:{L}[1..4];map(u->op(1,u),{L});
Comments