A213687 Numbers which are the values of the quadratic polynomial 3+4*k+7*t+8*k*t on nonnegative integers.
3, 7, 10, 11, 15, 17, 19, 22, 23, 24, 27, 31, 34, 35, 37, 38, 39, 43, 45, 46, 47, 51, 52, 55, 57, 58, 59, 63, 66, 67, 70, 71, 73, 75, 77, 79, 80, 82, 83, 87, 91, 94, 95, 97, 99, 101, 103, 106, 107, 108, 111, 112, 115, 117, 118, 119, 122, 123, 126, 127, 129
Offset: 1
Keywords
Examples
31 is a term because the solutions to 3+4*k+7*t+8*k*t = 31 are {k = 0, t = 4}, {k = 7, t = 0}.
References
- I. Gueye and M. Mizony, Recent progress about Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 6-14.
- M. Mizony and I. Gueye, Towards the proof of Erdős-Straus conjecture, B SO MA S S, Volume 1, Issue 2, pp. 141-150.
Links
- P. Erdős, On a Diophantine equation, (Hungarian. Russian, English summaries), Mat. Lapok 1, 1950, pp. 192-210.
- M. Mizony and M.-L. Gardes, Sur la conjecture d'Erdős et Straus, see pages 14-17.
- Eric Weisstein's World of Mathematics, Twin Pythagorean Triple
- K. Yamamoto, On the Diophantine Equation 4/n=1/x+1/y+1/z, Mem. Fac. Sci. Kyushu U. Ser. A 19, 37-47, 1965.
Crossrefs
Programs
-
Maple
H:=(k, t) -> 4/(3+4*k+7*t+8*k*t) = [1/2*1/((3+4*k+7*t+8*k*t)*(1+k)), 1/((1+k)*(2*t+1)), 1/2*1/((1+k)*(2*t+1)*(3+4*k+7*t+8*k*t))]: cousin:=proc(p) local n,k; for n from 0 to (p-3)/7 do if (p-3-7*n) mod (4+8*n)=0 then k:=(p-3-7*n)/(4+8*n): return([p,n,H(k,n)]) fi;od; end: L:=NULL:for p from 2 to 500 do L:=L,cousin(p): od:{L}[1..10];map(u->op(1,u),{L});map(u->op(2,u),{L});
Comments