A213698 Half the number of 3 X 3 0..n symmetric arrays with no 2 X 2 subblock summing to 2n.
13, 192, 1320, 5470, 17499, 45892, 105856, 219564, 421825, 758560, 1296408, 2117882, 3336655, 5087460, 7549184, 10927192, 15486741, 21525024, 29417800, 39578070, 52519203, 68796772, 89091840, 114132100, 144799369, 182025792
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..3..4....2..0..1....0..1..1....4..4..4....3..0..0....2..4..3....3..1..1 ..3..0..3....0..2..0....1..3..2....4..1..2....0..1..4....4..3..2....1..2..0 ..4..3..3....1..0..0....1..2..4....4..2..4....0..4..2....3..2..2....1..0..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A213697.
Formula
Empirical: a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
Empirical g.f.: x*(13 + 153*x + 731*x^2 + 1461*x^3 + 1803*x^4 + 1111*x^5 + 425*x^6 + 59*x^7 + 4*x^8) / ((1 - x)^7*(1 + x)^4). - Colin Barker, Jul 22 2018
Comments