This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213714 #16 Jun 11 2017 06:43:51 %S A213714 0,1,0,2,3,0,0,4,5,0,6,7,0,0,0,8,9,0,10,11,0,0,12,13,0,14,15,0,0,0,0, %T A213714 16,17,0,18,19,0,0,20,21,0,22,23,0,0,0,24,25,0,26,27,0,0,28,29,0,30, %U A213714 31,0,0,0,0,0,32,33,0,34,35,0,0,36,37,0,38,39,0,0,0,40,41,0,42,43,0,0,44,45,0,46,47,0 %N A213714 Inverse function for injection A005187. %C A213714 a(0)=0; thereafter if n occurs as a term of A005187, a(n)=its position in A005187, otherwise zero. This works as an "inverse" function for A005187 in a sense that a(A005187(n)) = n for all n. %C A213714 a(n)*A234017(n) = 0 for all n. %H A213714 Antti Karttunen, <a href="/A213714/b213714.txt">Table of n, a(n) for n = 0..8192</a> %F A213714 a(0)=0, for n>0, a(n) = A079559(n) * (A046699(n+2)-1) [With A046699's October 2012 starting offset. Incorrect indexing shown in this formula corrected by _Antti Karttunen_, Dec 18 2013] %o A213714 (MIT/GNU Scheme) %o A213714 (define (A213714 n) (if (< n 1) 0 (* (A079559 n) (- (A046699 (+ n 2)) 1)))) ;; With A046699's October 2012 starting offset. %o A213714 (Haskell) %o A213714 import Data.List (genericIndex) %o A213714 a213714 n = genericIndex a213714_list n %o A213714 a213714_list = f [0..] a005187_list 0 where %o A213714 f (x:xs) ys'@(y:ys) i | x == y = i : f xs ys (i+1) %o A213714 | otherwise = 0 : f xs ys' i %o A213714 -- _Reinhard Zumkeller_, May 01 2015 %o A213714 (Python) %o A213714 from sympy import factorial %o A213714 def a046699(n): %o A213714 if n<3: return 1 %o A213714 s=1 %o A213714 while factorial(2*s)%(2**(n - 1))>0: s+=1 %o A213714 return s %o A213714 def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) %o A213714 def a043545(n): %o A213714 x=bin(n)[2:] %o A213714 return int(max(x)) - int(min(x)) %o A213714 def a079559(n): return 1 if n==0 else a043545(n + 1)*a079559(n + 1 - a053644(n + 1)) %o A213714 def a(n): return 0 if n==0 else a079559(n)*(a046699(n + 2) - 1) # _Indranil Ghosh_, Jun 11 2017 %Y A213714 Can be used when computing A213715, A213723, A213724, A233275, A233277. Cf. A005187, A046699, A079559, A234017, A230414. %K A213714 nonn %O A213714 0,4 %A A213714 _Antti Karttunen_, Oct 26 2012