cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213735 Triangle read by rows: row n is the expansion of x^n in terms of (x+k)!/x! for decreasing k.

This page as a plain text file.
%I A213735 #22 May 14 2025 09:08:51
%S A213735 1,1,-1,1,-3,1,1,-6,7,-1,1,-10,25,-15,1,1,-15,65,-90,31,-1,1,-21,140,
%T A213735 -350,301,-63,1,1,-28,266,-1050,1701,-966,127,-1,1,-36,462,-2646,6951,
%U A213735 -7770,3025,-255,1,1,-45,750,-5880,22827,-42525,34105,-9330,511,-1
%N A213735 Triangle read by rows: row n is the expansion of x^n in terms of (x+k)!/x! for decreasing k.
%C A213735 Signed version of A008278.
%e A213735 Triangle starts
%e A213735   1;
%e A213735   1,  -1;
%e A213735   1,  -3,  1;
%e A213735   1,  -6,  7,  -1;
%e A213735   1, -10, 25, -15,  1;
%e A213735   1, -15, 65, -90, 31, -1;
%e A213735   ...
%e A213735 The fourth row corresponds to the expansion x^3 = 1*(x + 3)!/x! - 6*(x + 2)!/x! + 7*(x + 1)!/x! - 1.
%o A213735 (Maxima) f1(p, n) := if n = 0 then [p] else [coeff(p, x ^ n), f1(p - expand(product(x + i, i, 1, n) * coeff(p, x^ n)), n - 1)]$
%o A213735 f(n) := flatten(f1(x ^ n, n))$
%K A213735 sign,tabl
%O A213735 0,5
%A A213735 _Douglas Boffey_, Jun 18 2012