This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213744 #18 Apr 24 2013 12:24:11 %S A213744 1,1,1,1,2,3,1,3,6,10,1,4,10,20,35,1,5,15,35,70,126,1,6,21,56,126,252, %T A213744 456,1,7,28,84,210,462,917,1667,1,8,36,120,330,792,1708,3368,6147,1,9, %U A213744 45,165,495,1287,2994,6354,12465,22825,1,10 %N A213744 Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed. %C A213744 For k<=4, the triangle coincides with triangle A213743. %C A213744 We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A062989(n) for n>=5, T(n,7)=A063262 for n>=5, T(n,8)=A063263 for n>=6, T(n,9)=A063264 for n>=7. %H A213744 Peter J. C. Moses, <a href="/A213744/b213744.txt">Rows n = 0..50 of triangle, flattened</a> %F A213744 C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1) %e A213744 Triangle begins %e A213744 n/k.|..0.....1.....2.....3.....4.....5.....6.....7 %e A213744 ================================================== %e A213744 .0..|..1 %e A213744 .1..|..1.....1 %e A213744 .2..|..1.....2.....3 %e A213744 .3..|..1.....3.....6....10 %e A213744 .4..|..1.....4....10....20....35 %e A213744 .5..|..1.....5....15....35....70....126 %e A213744 .6..|..1.....6....21....56...126....252...456 %e A213744 .7..|..1.....7....28....84...210....462...917....1667 %t A213744 Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[6] (* _Peter J. C. Moses_, Apr 16 2013 *) %Y A213744 Cf. A007318, A005725, A111808, A187925, A213742, A213743, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264. %K A213744 nonn,tabl %O A213744 0,5 %A A213744 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 19 2012