This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213747 #15 Jul 29 2012 18:22:33 %S A213747 1,6,3,23,16,7,72,57,36,15,201,170,125,76,31,522,459,366,261,156,63, %T A213747 1291,1164,975,758,533,316,127,3084,2829,2448,2007,1542,1077,636,255, %U A213747 7181,6670,5905,5016,4071,3110,2165,1276,511,16398,15375,13842 %N A213747 Rectangular array: (row n) = b**c, where b(h) = -1 + 2^h, c(h) = b(n-1+h), n>=1, h>=1, and ** = convolution. %C A213747 Principal diagonal: A213748. %C A213747 Antidiagonal sums: A213749. %C A213747 Row 1, (1,3,7,15,31,...)**(1,3,7,15,31,...): A045618. %C A213747 Row 2, (1,3,7,15,31,...)**(3,7,15,31,...). %C A213747 Row 3, (1,3,7,15,31,...)**(7,15,31,...). %C A213747 For a guide to related arrays, see A213500. %H A213747 Clark Kimberling, <a href="/A213747/b213747.txt">Antidiagonals n = 1..60, flattened</a> %F A213747 T(n,k) = 6*T(n,k-1)-13*T(n,k-2)+12*T(n,k-3)-4*T(n,k-4). %F A213747 G.f. for row n: f(x)/g(x), where f(x) = -1 + 2^n - (-2 - 2^n)*x and g(x) = (1 - 3*x + 2*x^2 )^2. %e A213747 Northwest corner (the array is read by falling antidiagonals): %e A213747 1....6.....23....72.....201 %e A213747 3....16....57....170....459 %e A213747 7....36....125...366....975 %e A213747 15...76....261...758....1007 %e A213747 31...156...533...1542...4071 %t A213747 b[n_] := -1 + 2^n; c[n_] := -1 + 2^n; %t A213747 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A213747 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213747 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A213747 r[n_] := Table[t[n, k], {k, 1, 60}] (* A213747 *) %t A213747 Table[t[n, n], {n, 1, 40}] (* A213748 *) %t A213747 s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] %t A213747 Table[s[n], {n, 1, 50}] (* A213749 *) %Y A213747 Cf. A213500. %K A213747 nonn,tabl,easy %O A213747 1,2 %A A213747 _Clark Kimberling_, Jun 19 2012