This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213750 #4 Jun 21 2012 22:28:36 %S A213750 1,5,3,14,11,5,30,26,17,7,55,50,38,23,9,91,85,70,50,29,11,140,133,115, %T A213750 90,62,35,13,204,196,175,145,110,74,41,15,285,276,252,217,175,130,86, %U A213750 47,17,385,375,348,308,259,205,150,98,53,19,506,495,465,420 %N A213750 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 2*(n-1+h)-1, n>=1, h>=1, and ** = convolution. %C A213750 Principal diagonal: A007585 %C A213750 Antidiagonal sums: A002417 %C A213750 row 1, (1,2,3,4,5,...)**(1,3,5,7,9,...): A000330 %C A213750 row 2, (1,2,3,4,5,...)**(3,5,7,9,...): A051925 %C A213750 row 3, (1,2,3,4,5,...)**(5,7,9,11,...): (2*k^3 + 15*k^2 + 13*k)/6 %C A213750 row 4, (1,2,3,4,5,...)**(7,9,11,13,...): (2*k^3 + 21*k^2 + 19*k)/6 %C A213750 For a guide to related arrays, see A213500. %F A213750 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213750 G.f. for row n: f(x)/g(x), where f(x) = (2*n - 1) - (2*n - 3)*x and g(x) = (1 - x )^4. %e A213750 Northwest corner (the array is read by falling antidiagonals): %e A213750 1....5....14...30....55....91 %e A213750 3....11...26...50....85....133 %e A213750 5....17...38...70....115...175 %e A213750 7....23...50...90....145...217 %e A213750 9....29...62...110...175...259 %e A213750 11...35...74...130...205...301 %t A213750 b[n_] := n; c[n_] := 2 n - 1; %t A213750 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A213750 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213750 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A213750 r[n_] := Table[t[n, k], {k, 1, 60}] (* A213750 *) %t A213750 d = Table[t[n, n], {n, 1, 40}] (* A007585 *) %t A213750 s1 = Table[s[n], {n, 1, 50}] (* A002417 *) %t A213750 FindLinearRecurrence[s1] %t A213750 FindGeneratingFunction[s1, x] %Y A213750 Cf. A213500. %K A213750 nonn,tabl,easy %O A213750 1,2 %A A213750 _Clark Kimberling_, Jun 20 2012