cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213753 Rectangular array: (row n) = b**c, where b(h) = 2*h-1, c(h) = -1 + 2^(n-1+h), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 6, 3, 21, 16, 7, 58, 51, 36, 15, 141, 132, 111, 76, 31, 318, 307, 280, 231, 156, 63, 685, 672, 639, 576, 471, 316, 127, 1434, 1419, 1380, 1303, 1168, 951, 636, 255, 2949, 2932, 2887, 2796, 2631, 2352, 1911, 1276, 511, 5998, 5979, 5928, 5823
Offset: 1

Views

Author

Clark Kimberling, Jun 20 2012

Keywords

Comments

Principal diagonal: A213754.
Antidiagonal sums: A213755.
Row 1, (1,3,5,7,9,...)**(1,3,7,15,...): A047520.
Row 2, (1,3,5,7,9,...)**(3,7,15,31,...).
Row 3, (1,3,5,7,9,...)**(7,15,31,63...).
Ror a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....6.....21....58.....141
3....16....51....132....307
7....36....111...280....639
15...76....231...576....1303
31...156...471...1168...2631
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := 2 n - 1; c[n_] := -1 + 2^n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213753 *)
    Table[t[n, n], {n, 1, 40}] (* A213754 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213755 *)

Formula

T(n,k) = 5*T(n,k-1)-9*T(n,k-2)+7*T(n,k-3)-2*T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = x*(-1 + 2^n + x + (-2 + 2^n)*x^2) and g(x) = (1 - 2*x)(1 - x )^3.