A213757
Principal diagonal of the convolution array A213756.
Original entry on oeis.org
1, 14, 65, 214, 597, 1518, 3649, 8462, 19157, 42646, 93777, 204294, 441781, 949598, 2030849, 4324510, 9174069, 19397574, 40893265, 85981910, 180353621, 377485774, 788527425, 1644165294, 3422550037, 7113537398, 14763947729
Offset: 1
A213758
Antidiagonal sums of the convolution array A213756.
Original entry on oeis.org
1, 9, 40, 130, 355, 871, 1994, 4360, 9245, 19205, 39356, 79934, 161415, 324755, 651870, 1306596, 2616609, 5237265, 10479280, 20964090, 41934571, 83876479, 167761330, 335532160, 671075045, 1342162141, 2684337764, 5368690550
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213762
Rectangular array: (row n) = b**c, where b(h) = 2^(h-1), c(h) = 2*n-3+2*h, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 5, 3, 15, 11, 5, 37, 29, 17, 7, 83, 67, 43, 23, 9, 177, 145, 97, 57, 29, 11, 367, 303, 207, 127, 71, 35, 13, 749, 621, 429, 269, 157, 85, 41, 15, 1515, 1259, 875, 555, 331, 187, 99, 47, 17, 3049, 2537, 1769, 1129, 681, 393, 217, 113, 53, 19, 6119
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....5....15...37....83....177
3....11...29...67....145...303
5....17...43...97....207...429
7....23...57...127...269...555
9....29...71...157...331...681
11...35...85...187...393...807
-
b[n_] := 2^(n - 1); c[n_] := 2 n - 1;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213762 *)
Table[t[n, n], {n, 1, 40}] (* A213763 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A213764 *)
Showing 1-4 of 4 results.
Comments