This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213759 #29 Aug 27 2018 02:07:44 %S A213759 1,4,11,22,39,62,93,132,181,240,311,394,491,602,729,872,1033,1212, %T A213759 1411,1630,1871,2134,2421,2732,3069,3432,3823,4242,4691,5170,5681, %U A213759 6224,6801,7412,8059,8742,9463,10222,11021,11860,12741,13664,14631 %N A213759 Principal diagonal of the convolution array A213783. %H A213759 Clark Kimberling, <a href="/A213759/b213759.txt">Table of n, a(n) for n = 1..1000</a> %H A213759 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A213759 a(n) = (3 - 3*(-1)^n - 4*n + 18*n^2 + 4*n^3)/24. %F A213759 a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). %F A213759 G.f.: x*(1 + x + x^2 - x^3)/((1 - x)^4 *(1 + x)). %F A213759 a(n+1) = a(n) + A047838(n+2) for n > 0. - _Guenther Schrack_, May 24 2018 %F A213759 a(n) = A212964(n+2) - n for n > 0. - _Guenther Schrack_, May 30 2018 %t A213759 b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2]; %t A213759 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A213759 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213759 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A213759 r[n_] := Table[t[n, k], {k, 1, 60}] (* A213783 *) %t A213759 Table[t[n, n], {n, 1, 40}] (* A213759 *) %t A213759 LinearRecurrence[{3,-2,-2,3,-1},{1,4,11,22,39},50] (* _Harvey P. Dale_, Jul 22 2014 *) %Y A213759 Cf. A213783, A213500. %Y A213759 Partial sums of A047838. - _Guenther Schrack_, May 24 2018 %K A213759 nonn,easy %O A213759 1,2 %A A213759 _Clark Kimberling_, Jun 22 2012