This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213771 #6 Jul 12 2012 12:26:51 %S A213771 1,6,2,18,11,3,40,30,16,4,75,62,42,21,5,126,110,84,54,26,6,196,177, %T A213771 145,106,66,31,7,288,266,228,180,128,78,36,8,405,380,336,279,215,150, %U A213771 90,41,9,550,522,472,406,330,250,172,102,46 %N A213771 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution. %C A213771 Principal diagonal: A213772 %C A213771 Antidiagonal sums: A132117 %C A213771 Row 1, (1,4,7,10,...)**(1,2,3,4,...): A002411 %C A213771 Row 2, (1,4,7,10,...)**(2,3,4,5,...): A162260 %C A213771 Row 3, (1,2,3,4,5,...)**(7,10,13,16,...): (k^3 + 7*k^2 - 2*k)/2 %C A213771 Row 4, (1,2,3,4,5,...)**(10,13,16,...): (k^3 + 10*k^2 - 3*k)/2 %C A213771 For a guide to related arrays, see A212500. %H A213771 Clark Kimberling, <a href="/A213771/b213771.txt">Antidiagonals n = 1..60, flattened</a> %F A213771 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213771 G.f. for row n: f(x)/g(x), where f(x) = x*(n + (n+1)*x - (n+2)*x^2) and g(x) = (1 - x)^4. %e A213771 Northwest corner (the array is read by falling antidiagonals): %e A213771 1....6....18...40....75....126 %e A213771 2....11...30...62....110...177 %e A213771 3....16...42...84....145...228 %e A213771 4....21...54...106...180...279 %e A213771 5....26...66...128...215...330 %t A213771 b[n_]:=3n-2;c[n_]:=n; %t A213771 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213771 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213771 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213771 r[n_]:=Table[t[n,k],{k,1,60}] (* A213771 *) %t A213771 Table[t[n,n],{n,1,40}] (* A213772 *) %t A213771 s[n_]:=Sum[t[i,n+1-i],{i,1,n}] %t A213771 Table[s[n],{n,1,50}] (* A132117 *) %Y A213771 Cf. A212500 %K A213771 nonn,tabl,easy %O A213771 1,2 %A A213771 _Clark Kimberling_, Jul 04 2012