This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213773 #6 Jul 07 2012 08:37:45 %S A213773 1,8,4,30,23,7,76,66,38,10,155,142,102,53,13,276,260,208,138,68,16, %T A213773 448,429,365,274,174,83,19,680,658,582,470,340,210,98,22,981,956,868, %U A213773 735,575,406,246,113,25,1360,1332,1232,1078 %N A213773 Rectangular array: (row n) = b**c, where b(h) = 3*h-2, c(h) = 3*n-5+3*h, n>=1, h>=1, and ** = convolution. %C A213773 Principal diagonal: A213782 %C A213773 Antidiagonal sums: A214092 %C A213773 Row 1, (1,4,7,10,…)**(1,4,7,10,…): A100175 %C A213773 Row 2, (1,4,7,10,…)**(4,7,10,13,…): (3*k^3 + 6*k^2 - k)/2 %C A213773 Row 3, (1,4,7,10,…)**(7,10,13,16,…): (3*k^3 + 15*k^2 - 4*k)/2 %C A213773 For a guide to related arrays, see A212500. %H A213773 Clark Kimberling, <a href="/A213773/b213773.txt">Table of n, a(n) for n = 1..1034</a> %F A213773 T(n,k) = 4*T(n,k-1)-6*T(n,k-2)+4*T(n,k-3)-T(n,k-4). %F A213773 G.f. for row n: f(x)/g(x), where f(x) = x(3*n-2 + (3*n+1)*x - (6*n-10)*x^2) and g(x) = (1-x)^4. %e A213773 Northwest corner (the array is read by falling antidiagonals): %e A213773 1....8....30....76....155...276 %e A213773 4....23...66....142...260...429 %e A213773 7....38...102...208...365...582 %e A213773 10...53...138...274...470...735 %e A213773 13...68...174...340...575...888 %t A213773 b[n_]:=3n-2;c[n_]:=3n-2; %t A213773 t[n_,k_]:=Sum[b[k-i]c[n+i],{i,0,k-1}] %t A213773 TableForm[Table[t[n,k],{n,1,10},{k,1,10}]] %t A213773 Flatten[Table[t[n-k+1,k],{n,12},{k,n,1,-1}]] %t A213773 r[n_]:=Table[t[n,k],{k,1,60}] (* A213773 *) %t A213773 Table[t[n,n],{n,1,40}] (* A214092 *) %t A213773 s[n_]:=Sum[t[i,n+1-i],{i,1,n}] %t A213773 Table[s[n],{n,1,50}] (* A213818 *) %Y A213773 Cf. A213500. %K A213773 nonn,tabl,easy %O A213773 1,2 %A A213773 _Clark Kimberling_, Jul 04 2012