This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213783 #10 Jul 12 2012 12:13:57 %S A213783 1,3,1,6,4,2,11,8,6,2,17,14,11,7,3,26,22,19,13,9,3,36,32,28,22,16,10, %T A213783 4,50,45,41,33,27,18,12,4,65,60,55,47,39,30,21,13,5,85,79,74,64,56,44, %U A213783 35,23,15,5,106,100,94,84,74,62,50,38,26,16,6,133,126,120,108 %N A213783 Rectangular array: (row n) = b**c, where b(h) = 1+[h/2], c(h) = [(n+h)/2], n>=1, h>=1, [ ] = floor, and ** = convolution. %C A213783 Principal diagonal: A213759. %C A213783 Antidiagonal sums: A213760. %C A213783 Row 1, (1,2,2,3,3,4,4,...)**(1,1,2,2,3,3,4,...): A005744. %C A213783 Row 2, (1,2,2,3,3,4,4,5,...)**(1,2,2,3,3,4,4,5,...). %C A213783 Row 3, (1,2,2,3,3,4,4,5,...)**(2,2,3,3,4,4,5,5,...). %C A213783 For a guide to related arrays, see A213500. %H A213783 Clark Kimberling, <a href="/A213783/b213783.txt">Antidiagonals n = 1..80, flattened</a> %F A213783 T(n,k) = 2*T(n,k-1) -T(n,k-2) - 4*T(n,k-3) +T(n,k-4) +2*T(n,k-5) -T(n,k-6). %F A213783 G.f. for row n: f(x)/g(x), where f(x) = [(n+1)/2] + [(n+2)/2]*x + ([(n-1)/2] + [(n+1)/2])*x^2 - (1+[n/2]-(n mod 2))*x^3 + [n/2]*x^4 and g(x) = (1 + x)^2 *(1 - x)^4, where [ ] = floor. %e A213783 Northwest corner (the array is read by falling antidiagonals): %e A213783 1...3....6....11...17...26...36....50 %e A213783 1...4....8....14...22...32...45....60 %e A213783 2...6....11...19...28...41...55....74 %e A213783 2...7....13...22...33...47...64....84 %e A213783 3...9....16...27...39...56...74....98 %e A213783 3...10...18...30...44...62...83....108 %e A213783 4...12...21...35...50...71...93....122 %e A213783 4...13...23...38...55...77...102...132 %t A213783 b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2]; %t A213783 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A213783 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A213783 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A213783 r[n_] := Table[t[n, k], {k, 1, 60}] (* A213783 *) %t A213783 Table[t[n, n], {n, 1, 40}] (* A213759 *) %t A213783 s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] %t A213783 Table[s[n], {n, 1, 50}] (* A213760 *) %Y A213783 Cf. A213500. %K A213783 nonn,tabl,easy %O A213783 1,2 %A A213783 _Clark Kimberling_, Jun 22 2012