This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213808 #20 Nov 26 2017 09:48:30 %S A213808 1,1,1,1,2,3,1,3,6,10,1,4,10,20,35,1,5,15,35,70,126,1,6,21,56,126,252, %T A213808 462,1,7,28,84,210,462,924,1716,1,8,36,120,330,792,1716,3432,6427,1,9, %U A213808 45,165,495,1287,3003,6435,12861,24229,1,10,55,220,715,2002,5005,11440,24300,48520,91828 %N A213808 Triangle of numbers C^(7)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 7 appearances allowed. %C A213808 For k <= 6, the triangle coincides with triangle A213745. %H A213808 G. C. Greubel, <a href="/A213808/b213808.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A213808 T(n,k) = Sum_{r=0..floor(k/8)} (-1)^r*C(n,r)*C(n-8*r+k-1, n-1). %F A213808 T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n > 1, T(n,3)=A000292(n) for n >= 3, T(n,4)=A000332(n) for n >= 7, T(n,5)=A000389(n) for n >= 9, T(n,6)=A000579(n) for n >= 11, T(n,7)=A000580(n) for n >= 13. %e A213808 Triangle begins %e A213808 n/k | 0 1 2 3 4 5 6 7 8 %e A213808 ----+--------------------------------------------------- %e A213808 0 | 1 %e A213808 1 | 1 1 %e A213808 2 | 1 2 3 %e A213808 3 | 1 3 6 10 %e A213808 4 | 1 4 10 20 35 %e A213808 5 | 1 5 15 35 70 126 %e A213808 6 | 1 6 21 56 126 252 462 %e A213808 7 | 1 7 28 84 210 462 924 1716 %e A213808 8 | 1 8 36 120 330 792 1716 3432 6427 %t A213808 Table[Sum[(-1)^r*Binomial[n, r]*Binomial[n - 8*r + k - 1, n - 1], {r, 0, Floor[k/8]}], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Nov 25 2017 *) %o A213808 (PARI) for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, sum(r=0, floor(k/8), (-1)^r*binomial(n,r)*binomial(n-8*r + k-1,n-1))), ", "))) \\ _G. C. Greubel_, Nov 25 2017 %Y A213808 Cf. A007318, A005725, A059481, A111808, A187925, A213742, A213743, A213744, A000217, A000292, A000332, A000389, A000579, A000580. %K A213808 nonn,tabl %O A213808 0,5 %A A213808 _Vladimir Shevelev_ and _Peter J. C. Moses_, Jun 20 2012