This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213809 #9 Jul 06 2012 09:40:10 %S A213809 1,1,1,1,3,3,3,3,3,5,5,3,5,5,5,5,5,5,5,7,7,5,7,7,7,7,7,7,7,9,9,7,9,9, %T A213809 9,9,9,9,9,11,11,9,11,11,11,11,11,11,11,13,13,11,13,13,13,13,13,13,13, %U A213809 15,15,13,15,15,15,15,15,15,15,17,17,15,17,17,17,17,17,17,17,19,19,17,19,19,19,19,19,19,19,21,21,19,21,21,21,21,21,21,21,23,23,21,23,23,23,23,23,23,23 %N A213809 Position of the maximum element in the simple continued fraction of Fibonacci(n+1)^5/Fibonacci(n)^5. %C A213809 The maximum elements themselves are in A113506. %C A213809 The fractions F(n+1)^5/F(n)^5 are 1, 32, 243/32, 3125/243,... (see A056572). The continued fractions are [1], [32], [7,1,1,2,6], [12,1,6,6,1,4], [10,2,17,17,1,4]..., and for the first 4 of these the maximum element is the first, for the 5th of these the maximum element is the third. %F A213809 a(10k+m)=3+2k if m=0,1,3,4,5,6,7,8,9, k>0. %F A213809 a(10k+2)=1+2k, k>0. %e A213809 The continued fraction of the fraction corresponding to [1,1,1,1,1,1,1,1,1,1,1,1,1]^5 is %e A213809 [11,11,7,1,39282,2,5,11,11,1,11,11] and the maximum occurs at place 5, which according to the formula, should be 3+2k, and since 13=10k+3, k=1 and 3+2k=3+2=5. %p A213809 A213809 := proc(n) %p A213809 local c,a,i; %p A213809 (combinat[fibonacci](n+1)/combinat[fibonacci](n))^5 ; %p A213809 c := numtheory[cfrac](%,quotients) ; %p A213809 a := 1 ; %p A213809 for i from 2 to nops(c) do %p A213809 if op(i,c) > op(a,c) then %p A213809 a := i ; %p A213809 end if; %p A213809 end do: %p A213809 a ; %p A213809 end proc: # _R. J. Mathar_, Jul 06 2012 %K A213809 nonn %O A213809 1,5 %A A213809 _Art DuPre_, Jun 20 2012